Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134300, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631248

RESUMO

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Assuntos
Cádmio , Percepção de Quorum , Cádmio/química , Rhizobiaceae/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
2.
Environ Sci Pollut Res Int ; 30(31): 76911-76922, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37247148

RESUMO

Metal-immobilizing bacteria play a critical role in metal accumulation in vegetables. However, little is known concerning the mechanisms involved in bacteria-induced reduced metal availability and uptake in vegetables. In this study, the impacts of metal-immobilizing Pseudomonas taiwanensis WRS8 on the plant biomass, Cd and Pb availability and uptake in two coriander (Coriandrum sativum L.) cultivars, and bacterial community structure were investigated in the polluted soil. Strain WRS8 increased the biomass of two coriander cultivars by 25-48% and reduced Cd and Pb contents in the edible tissues by 40-59% and available Cd and Pb contents in the rhizosphere soils by 11.1-15.2%, compared with the controls. Strain WRS8 significantly increased the pH values and relative abundances of the dominant populations of Sphingomonas, Pseudomonas, Gaiellales, Streptomyces, Frankiales, Bradyrhizobium, and Luteimonas, while strain WRS8 significantly decreased the relative abundances of the dominant populations of Gemmatimonadaceae, Nitrospira, Haliangium, Paenibacillus, Massilia, Bryobacter, and Rokubacteriales and the rare bacterial populations of Enterorhabdus, Roseburia, Luteibacter, and Planifilum in the rhizosphere soils, compared with the controls. Significantly negative correlations were observed between the available metal concentrations and the abundances of Pseudomonas, Luteimonas, Frankiales, and Planifilum. These results implied that strain WRS8 could affect the abundances of the dominant and rare bacterial populations involved in metal immobilization, resulting in increased pH values and decreased metal availability and uptake in the vegetables in the contaminated soil.


Assuntos
Actinomycetales , Coriandrum , Metais Pesados , Poluentes do Solo , Cádmio/análise , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Pseudomonas , Verduras , Bactérias , Solo/química
3.
J Environ Sci (China) ; 120: 84-93, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623775

RESUMO

Biofilm-producing bacteria can decrease Cd uptake in vegetables, but mechanisms underlying this effect are poorly characterized. In this study, two mutant strains B12ΔYwcc and B12ΔSlrR were constructed from a biofilm-producing Bacillus subtilis strain B12. Then, the impacts of strain B12 and its high biofilm-producing mutant strain B12ΔYwcc and low biofilm-producing mutant strain B12ΔSlrR on Cd availability and uptake in Chinese cabbage and the related mechanisms were investigated in the Cd-polluted soil. Strain B12 and its mutants B12ΔYwcc and B12ΔSlrR increased the dry biomasses of edible tissues by 54%-130% compared with the controls. Strain B12 and its mutant B12ΔYwcc reduced the soil available Cd content by 36%-50% and root and edible tissue Cd contents by 23%-50% compared with the controls. Furthermore, the mutant strain B12ΔYwcc reduced the edible tissue Cd content by 40% and increased the polysaccharide content by 23%, invertase activity by 139%, and gene copies of the cumA by 4.5-fold, epsA by 7.1-fold, and cadA by 4.3-fold, which were involved in Cd adsorption in the rhizosphere soils, respectively, compared with strain B12. The polysaccharide content and cumA, epsA, and cadA gene copy numbers showed significantly reverse correlations with the available Cd content. Notably, the mutant strain B12ΔYwcc showed better ability to colonize the vegetable root surface than strain B12. These findings demonstrated that the biofilm-overproducing mutant strain B12ΔYwcc increased the polysaccharide production and Cd-immobilizing related cumA, epsA, and cadA gene copies, resulting in lower Cd availability and accumulation in Chinese cabbage in the Cd-polluted soil.


Assuntos
Brassica , Poluentes do Solo , Bacillus subtilis/genética , Biofilmes , Cádmio/análise , Cádmio/toxicidade , China , Polissacarídeos , Solo , Poluentes do Solo/análise , Verduras
4.
J Environ Manage ; 302(Pt A): 114016, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34717106

RESUMO

In this study, one mutant strain P29ΔsinR with increased biofilm production was constructed from a biofilm-producing Bacillus amyloliquefaciens strain P29. Then, the effect of strain P29 and its biofilm-overproducing mutant strain P29ΔsinR on Pb availability and accumulation in lettuce and the associated mechanisms were characterized in the Pb-contaminated soil. The live strains P29 and P29ΔsinR increased the dry masses of roots and edible tissues by 31-74% compared to the controls. The live strains P29 and P29ΔsinR reduced the Pb uptake in the roots by 36-52% and edible tissues by 24-43%, Pb bioconcentration factor by 36-52%, and rhizosphere soil available Pb content by 12-25%, respectively, compared to the controls. The live strains P29 and P29ΔsinR increased the pH, proportion of biofilm-producing bacteria by 46-154%, contents of polysaccharides by 99-139% and proteins by 32-57%, and gene relative abundances of epsC by 7.1-10.2-fold, tasA by 10.3-10.8-fold, and sipW by 6.5-26.1-fold, which were associated with biofilm formation and Pb adsorption in the rhizosphere soils, respectively, compared to the controls. Furthermore, the mutant strain P29ΔsinR showed higher ability to reduce Pb availability and uptake in lettuce and increase the pH, proportion of biofilm-producing bacteria, polysaccharide and protein contents, and relative abundances of these genes. These results showed that the biofilm-overproducing strain P29ΔsinR induced lower Pb availability and accumulation in the vegetable and more biofilm-producing bacteria, polysaccharide and protein production, and Pb-immobilizing related gene abundances in the Pb-contaminated soil.


Assuntos
Bacillus amyloliquefaciens , Poluentes do Solo , Bacillus amyloliquefaciens/genética , Biofilmes , Cádmio/análise , Chumbo , Lactuca , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
5.
Appl Environ Microbiol ; 87(24): e0155221, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586903

RESUMO

Silicate mineral weathering (dissolution) plays important roles in soil formation and global biogeochemical cycling. In this study, a combination of genomics, transcriptomics, and genetics was used to identify the molecular basis of mineral weathering activity and acid tolerance in Pseudomonas azotoformans F77. Biotite was chosen as a silicate mineral to investigate mineral weathering. The genome of strain F77 was sequenced, and the genes significantly upregulated when grown in the presence of biotite included mineral weathering-related genes associated with gluconic acid metabolism, flagellar assembly, and pilus biosynthesis and acid tolerance-related genes associated with neutralizing component production, reducing power, and proton efflux. The biotite-weathering behaviors of strain F77 and its mutants that were created by deleting the tkt, tal, and gntP genes, which are involved in gluconic acid metabolism, and the potF, nuoF, and gdtO genes, which are involved in acid tolerance, were determined. The Fe and Al concentrations in the strain F77-inoculated medium increased 2.2- to 13.7-fold compared to the controls. The cell numbers of strain F77 increased over time, while the pH values in the medium ranged from 3.75 to 3.90 between 20 and 36 h of incubation. The release of Al and Fe was significantly reduced in the F77 Δtal, F77 ΔgntP, F77 ΔpotF, and F77 ΔnuoF mutants. Bacterial growth was significantly reduced in the presence of biotite in the F77 ΔpotF and F77 ΔnuoF mutants. Our results demonstrated the acid tolerance of strain F77 and suggested that multiple genes and metabolic pathways in strain F77 are involved in biotite weathering and acid tolerance during the mineral weathering process. IMPORTANCE Acid production and tolerance play important roles in effective and persistent mineral weathering in bacteria, although the molecular mechanisms governing acid production and acid tolerance in bacteria have not been fully elucidated. In this study, the molecular mechanisms underlying biotite (as a silicate mineral) weathering (dissolution) and acid tolerance of P. azotoformans F77 were characterized using genomics, transcriptomics, and genetics analyses. Our results showed that the genes and metabolic pathways for gluconic acid metabolism, flagellar assembly, and pilus biosynthesis may play important roles in mineral weathering by strain F77. Notably, the genes associated with neutralizing component production, reducing power, and proton efflux may be related to acid tolerance in strain F77. The expression of these acid production- and acid tolerance-related genes was observed to be increased by biotite in strain F77. Our findings may help to elucidate the molecular mechanisms governing mineral weathering and, especially, acid tolerance in mineral-weathering bacteria.


Assuntos
Minerais/metabolismo , Pseudomonas , Silicatos/metabolismo , Genômica , Fenótipo , Prótons , Pseudomonas/genética , Pseudomonas/metabolismo , Transcriptoma
6.
Sci Total Environ ; 785: 147357, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957590

RESUMO

Mosses and lichens have been shown to play an important role in enhancing global chemical weathering of the surface rock. However, there are no studies concerning the effects of mosses and lichens on the microbial communities inhabiting rock surfaces. In this study, culture-dependent and culture-independent analyses were employed to compare the diversity, composition, and rock-weathering activity of bacterial communities inhabiting potash trachyte surfaces covered by mosses (MR) and lichens (LR) with those inhabiting surrounding bare rock surfaces (BR). Analyses of 16S rRNA gene Miseq sequencing revealed that the order of alpha (α) diversity indices, in terms of the number of unique operational taxonomic units (OTUs) and Faith's index of phylogenetic diversity, was MR > LR > BR. Moreover, α-diveristy indices were positively correlated with the content of available phosphorus (AP) in rock samples (r = 0.87-0.92), and this explained 70% of the variation in bacterial community structure. The culture-dependent analyses revealed that 100% of the culturable bacterial strains could enhance potash trachyte weathering, and the order of rock-weathering acitivity of bacterial strains was MR > LR > BR. Acidolysis was found to be the major mechanism involved in the bacteria-mediated weathering of potash trachyte. Moreover, bacterial strians related to the genera Dyella and Ralstonia showed the highest rock-weatheirng activity, and both Dyella and Ralstonia were enriched in MR. The results of this study enhance our understanding of the roles of bacteria facilitated by mosses and lichens in rock weathering, element cycling, and soil formation, and provide new insights into the interaction between non-vascular plants and the bacteria on rock surfaces.


Assuntos
Briófitas , Líquens , Bactérias/genética , China , Misturas Complexas , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
7.
Chemosphere ; 275: 130109, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677267

RESUMO

In this study, an cadmium (Cd)-immobilizing and arginine decarboxylase-producing endophytic Sphingomonas sp. strain C40 obtained from the seeds of Oryza sativa Cliangyou 513 was characterized for its Cd availability and Cd uptake in host rice using hydroponic and soil experiments. The Cd concentration decreased by 51-95% compared to the control, while the spermidine concentration increased by 19-25% with Cd compared with no Cd in the strain C40-inoculated solution. Strain C40 decreased the above-ground tissue Cd content by 27-37% and increased spermine and spermidine contents by 28-67% and the expression levels of genes involved in spermine and spermidine production by 29-217% in rice roots compared to the controls. Furthermore, correlation analyses showed the significantly negative correlation between rice root spermine and spermidine contents and above-ground tissue Cd content. In the Cd-added soil, strain C40 promoted the rice biomass by 29-36% and decreased rice root, above-ground tissue, and grain Cd contents by 18, 16, and 33% and total grain Cd uptake by 14% compared with the controls at the maturity stage. Strain C40 decreased the exchangeable Cd content by 27% and increased the Fe and Mn oxides-bound Cd content by 45% in the rice rhizosphere soils at the maturity stage compared with the controls. These results suggested that the endophytic bacterial strain C40 increased rice root polyamine production and their related gene expression and the transformation of available Cd to unavailable Cd, leading to reduced Cd accumulation and translocation from the rice roots to grains.


Assuntos
Oryza , Poluentes do Solo , Sphingomonas , Cádmio/análise , Carboxiliases , Oryza/genética , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Sphingomonas/genética
8.
Environ Pollut ; 268(Pt A): 115850, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33143980

RESUMO

Metal-resistant bacteria can reduce Cd accumulation in plants, but mechanisms underlying this effect are poorly understood. In this study, a highly effective Cd-resistant WRS8 strain was obtained from the rhizoshere soil of Triticum aestivum L. Yangmai-13 and identified as Pseudomonas taiwanensis based on 16S rRNA gene sequence analysis. Strain WRS8 was investigated for its effects on Cd availability and wheat tissue Cd contents and the related mechanisms using a hydroponic culture experiment. In strain WRS8-inoculated solution, the Cd concentration reduced and the pH and cell-adsorbed Cd increased with time. Strain WRS8 increased the wheat root and above-ground tissue dry weights by 11-36% compared to the controls. In strain WRS8-inoculated wheat plants, the Cd contents of the roots and above-ground tissues decreased by 78-85% and 88-94% and the Cd bioconcentration and translocation factors decreased by 78-85% and 46-58% at days 3 and 10, respectively, compared with the controls. The root surface-adsorbed Cd contents increased by 99-121% in the WRS8 strain-inoculated wheat plants at days 3 and 10 compared to the controls. Furthermore, strain WRS8 colonized the wheat root surfaces and interiors and reduced the expression levels of the LCT1 and HMA2 genes involved in Cd accumulation and transport in wheat roots by 46% and 30%, respectively, compared to the controls. In the Cd-contaminated soils, strain WRS8 significantly reduced the available Cd content by 20-24% and increased the pH compared to the controls. These findings showed the important role of strain WRS8 in reducing solution and soil Cd availability and suggested that strain WRS8 reduced the wheat tissue Cd accumulation by increasing root surface Cd adsorption and decreasing wheat root Cd uptake and transport-related gene expression and may provide a new and effective wheat rhizobacteria-enhanced approach for reducing wheat Cd uptake in Cd-polluted environments.


Assuntos
Cádmio , Poluentes do Solo , Adsorção , Cádmio/análise , Expressão Gênica , Pseudomonas , RNA Ribossômico 16S , Solo , Poluentes do Solo/análise , Triticum
9.
Ecotoxicol Environ Saf ; 206: 111189, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858328

RESUMO

In this study, a highly effective combined biochar and metal-immobilizing bacteria (Bacillus megaterium H3 and Serratia liquefaciens CL-1) (BHC) was characterized for its effects on solution Pb and Cd immobilization and edible tissue biomass and Pb and Cd accumulation in Chinese cabbages and radishes and the mechanisms involved in metal-polluted soils. In the metal-containing solution treated with BHC, the Pb and Cd concentrations decreased, while the pH and cell numbers of strains H3 and CL-1 increased over time. BHC significantly increased the edible tissue dry weight by 17-34% and reduced the edible tissue Pb (0.32-0.46 mg kg-1) and Cd (0.16 mg kg-1) contents of the vegetables by 24-45%. In the vegetable rhizosphere soils, BHC significantly decreased the acid-soluble Pb (1.81-2.21 mg kg-1) and Cd (0.40-0.48 mg kg-1) contents by 26-47% and increased the reducible Pb (18.2-18.8 mg kg-1) and Cd (0.38-0.39 mg kg-1) contents by 10-111%; while BHC also significantly increased the pH, urease activity by 115-169%, amorphous Fe oxides content by 12-19%, and relative abundance of gene copy numbers of Fe- and Mn-oxidising Leptothrix species by 28-73% compared with the controls. These results suggested that BHC decreased edible tissue metal uptake of the vegetables by increasing pH, urease activity, amorphous Fe oxides, and Leptothrix species abundance in polluted soil. These results may provide an effective and eco-friendly way for metal remediation and reducing metal uptake in vegetables by using combined biochar and metal-immobilizing bacteria in polluted soils.


Assuntos
Carvão Vegetal/química , Compostos Férricos/análise , Leptothrix/crescimento & desenvolvimento , Metais Pesados/análise , Serratia liquefaciens/crescimento & desenvolvimento , Poluentes do Solo/análise , Verduras/química , Cádmio/análise , Chumbo/análise , Leptothrix/genética , Leptothrix/metabolismo , Metais Pesados/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Verduras/metabolismo
10.
Ecotoxicol Environ Saf ; 203: 111017, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678748

RESUMO

In this study, the effect of two metal-immobilizing bacterial strains, Serratia liquefaciens CL-1 and Bacillus thuringiensis X30, on the availability of Cd and Pb and the metal accumulation in potato tubers, as well as the underlying mechanisms in metal-contaminated soils were characterized. Moreover, the impacts of the strains on metal immobilization, pH, and NH4+ concentration in metal-contaminated soil solutions were evaluated. Strains CL-1 and X30 increased tuber dry weight by 46% and 40%, reduced tuber Cd and Pb contents by 68-83% and 42-47%, and decreased the Cd and Pb translocation factors by 61-70% and 30-34%, respectively, compared to the controls. Strains CL-1 and X30 decreased the available Cd and Pb contents by 52-67% and 30-44% and increased the NH4+ content by 55% and 31%, pH, urease activity by 70% and 41%, and relative abundance of ureC gene copies by 37% and 20% in the rhizosphere soils, respectively, compared with the controls. Reduced Cd and Pb concentrations and increased pH and NH4+ concentration were found in the bacteria-inoculated soil solution compared to the controls. These results suggested that the strains reduced tuber metal uptake through decreasing the metal availability and increasing the pH, ureC gene relative abundance and urease activity as well as decreasing the metal translocation from the leaves to tubers. These results may provide an effective metal-immobilizing bacteria (especially strain CL-1)-enhanced approach to reduce metal uptake of potato tubers in metal-polluted soils.


Assuntos
Bacillus thuringiensis/metabolismo , Metais Pesados/metabolismo , Serratia liquefaciens/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Urease/metabolismo , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Chumbo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Rizosfera , Solo/química , Poluentes do Solo/análise , Solanum tuberosum/metabolismo , Especificidade da Espécie
11.
Sci Total Environ ; 740: 139972, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559530

RESUMO

Biochar and metal-immobilizing bacteria play an important role in reducing the metal uptake of plants. However, little research has characterized the synergistic effects of biochar and metal-immobilizing bacteria on reducing metal accumulation in wheat grains and the underlying mechanisms. In this study, the effects of biochar, metal-immobilizing Serratia liquefaciens CL-1, and biochar + CL-1 on grain Cd and Pb uptake in wheat (Triticum aestivum L. Sumai-188) and the mechanisms involved under field conditions were characterized. Biochar, CL-1, and biochar + CL-1 reduced wheat grain Cd and Pb contents by 17-25%, 24-27%, and 45-55% and reduced the available Cd and Pb contents in the rhizosphere soils by 14-33%, 13-38%, and 27-57%, respectively, compared with the controls. Biochar, CL-1, and biochar + CL-1 increased soil pH values. CL-1 and biochar + CL-1 increased putrescine contents by 93% and 150% and bacterial aguA gene copy numbers by 30% and 44%, respectively, in the rhizosphere soils compared to the controls based on qPCR analysis. Furthermore, biochar + CL-1 reduced the Cd and Pb bioconcentration and translocation factors by 23-33% compared to the controls. CL-1 significantly increased the pH and reduced water-soluble Cd and Pb concentrations (18-44%) in the metal-contaminated soil solution compared to the controls. The results showed a synergistic effect of biochar and CL-1 on the reduction of Cd and Pb accumulation in wheat grains. These findings suggested that biochar plus CL-1 reduced wheat grain metal uptake by reducing metal availability and translocation from the roots to grains and increasing pH levels, putrescine production, and aguA gene abundance, and they highlight the possibility of developing an effective technique for reducing the metal uptake of wheat grains using biochar plus metal-immobilizing bacteria in metal-contaminated soils.


Assuntos
Serratia liquefaciens , Poluentes do Solo/análise , Cádmio/análise , Carvão Vegetal , Metais , Solo , Triticum
12.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31953343

RESUMO

In this study, the mineral-weathering bacterium Pseudomonas azotoformans F77, which was isolated from the soil of a debris flow area, was evaluated for its weathering activity under direct contact with biotite or without contact. Then, biotite-weathering behaviors of strain F77, mutants that had been created by deleting the gcd and adh genes (which are involved in gluconic acid metabolism and pilus formation, respectively), and the double mutant F77ΔgcdΔadh were compared. The relative gene expression levels of F77 and its mutants F77Δgcd and F77Δadh were also analyzed in the presence of biotite. Direct contact with biotite increased Fe and Al release from the mineral in the presence of F77. All strains had similar abilities to release Fe and Al from the mineral except for F77Δgcd and F77Δadh Mobilized Fe and Al concentrations were decreased by up to 72, 26, and 87% in the presence of F77Δgcd, F77Δadh, and F77ΔgcdΔadh, respectively, compared to levels observed in the presence of F77 during the mineral-weathering process. Gluconic acid production was decreased for F77Δgcd and F77ΔgcdΔadh, while decreased cell attachment on the mineral surface was observed for F77Δadh, compared to findings for F77. The F77 genes involved in pilus formation and gluconic acid metabolism showed increased expression levels in the presence of biotite. The results of this study showed important roles for the genes involved in gluconic acid metabolism and pilus formation in mineral weathering by F77 and demonstrated the distinctive effect of these genes on mineral weathering by F77.IMPORTANCE Bacteria play important roles in mineral weathering and soil formation, although the molecular mechanisms underlying the interactions between bacteria and silicate minerals are poorly understood. In this study, the interactions between biotite and the highly effective mineral-weathering bacterium P. azotoformans F77 were characterized. Our results showed that the genes involved in gluconic acid metabolism and pilus formation play important roles in mineral weathering by F77. The presence of biotite could promote the expression of these genes in F77, and a distinctive effect of these genes on mineral weathering by F77 was observed in this study. Our results provide new knowledge and promote better understanding regarding the interaction between silicate minerals and mineral-weathering bacteria, as well as the molecular mechanisms involved in these processes.


Assuntos
Silicatos de Alumínio/metabolismo , Compostos Ferrosos/metabolismo , Minerais/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo
13.
Environ Pollut ; 259: 113832, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918131

RESUMO

In this study, an arsenic (As)-resistant facultative endophytic bacterial strain, F2, was isolated from the root of Oryza sativa Longliangyou Huazhan and identified as Serratia liquefaciens according to 16S rRNA gene sequence analysis. Strain F2 was characterized for i) its impacts on As immobilization in solution and rice tissue As accumulation, and ii) the mechanisms involved for different levels of As-pollution in soils. In strain F2-inoculated culture medium, the concentration of As decreased, while the pH, cell growth, and cell-immobilized As significantly increased over time. Grain As content reduced by between 23 and 36% in strain F2-inoculated rice plants in comparison to the control. Available As content decreased by between 28 and 52%, but unavailable As content increased by between 27 and 46% in the strain F2-inoculated soil when compared with the controls. Moreover, the strain decreased the As translocation factor by between 34 and 46%, but increased the As concentration by between 24 and 70% in Fe plaque on the rice root surfaces in comparison to the controls. These results suggested that strain F2 decreased the rice grain As uptake by i) decreasing available As in soil, ii) increasing rice root surface As adsorption, and iii) decreasing As translocation from the roots to grains. Our findings may provide a new rice-derived facultative endophytic bacteria-assisted approach for decreasing the As uptake to rice grains in As-polluted soils.


Assuntos
Arsênio , Oryza , Serratia liquefaciens , Poluentes do Solo , Grão Comestível , Raízes de Plantas , RNA Ribossômico 16S , Solo
14.
J Basic Microbiol ; 60(4): 362-371, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31840843

RESUMO

Bacteria play important roles in mineral weathering and soil formation. However, little is known regarding the interactions between biotite and Arthrobacter strains. In this study, the mineral-mineral activities of the Arthrobacter pascens F74 isolated from a weathered rock surface were evaluated for its weathering behavior under direct contact and no contact with biotite. No contact was obtained by using dialysis bags. When directly in contact with biotite, Al and Fe concentrations increased by 9- to 47-fold compared with the controls in the presence of strain F74. Furthermore, strain F74 increased mobilized Al by 106% to 175% and Fe by 29% to 123% under direct contact than under no contact conditions. During biotite dissolution, significantly higher cell numbers and lower pH in the culture medium were observed in the presence of strain F74 under direct contact conditions than under no contact conditions. Significantly higher gluconic acid concentration and glucose dehydrogenase activity were found under direct contact conditions than under no contact and no biotite conditions. Scanning electron microscopy analysis showed cell adhesion on the biotite surface. These results demonstrated that strain F74 behaved differently with respect to biotite-weathering effectiveness and mechanisms under different contact conditions. The results also suggested that direct contact between biotite and strain F74 was important for the production of gluconic acid, cell adhesion on the mineral surface, and the mineral dissolution of the strain.


Assuntos
Silicatos de Alumínio/química , Arthrobacter/metabolismo , Compostos Ferrosos/química , Gluconatos/análise , Minerais/química , Alumínio/química , Glucose 1-Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Ferro/química , Microscopia Eletrônica de Varredura , Microbiologia do Solo
15.
Environ Pollut ; 242(Pt B): 1488-1499, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144722

RESUMO

In this study, the molecular mechanisms involved in Ralstonia eutropha Q2-8-induced increased biomass and reduced cadmium (Cd) and arsenic (As) uptake in wheat plants (Triticum aestivum cv. Yangmai 16) were investigated in growth chambers. Strain Q2-8 significantly increased plant biomass (22-75%) without and with Cd (5 µM) + As (10 µM) stress and reduced plant above-ground tissue Cd (37%) and As (34%) contents compared to those in the controls. Strain Q2-8 significantly increased the proportions of Cd and As in wheat root cell walls. Under Cd and As stress, 109 root proteins were differentially expressed among which those involved in metabolisms, stress and defence, and energy were dominant in the presence of strain Q2-8. Furthermore, energy-, defence-, and cell wall biosynthesis-related proteins were found to be up-regulated. Notably, differentially expressed cell wall biosynthesis-related proteins in roots were only found in bacteria-inoculated plants under Cd and As stress. The results suggest that strain Q2-8 can alleviate Cd and As toxicity to wheat plant seedlings and reduce above-ground tissue Cd and As uptake by increasing the efficiency of root energy metabolism, defence, and cell wall biosynthesis under Cd and As stress.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Cupriavidus necator , Raízes de Plantas/microbiologia , Triticum/metabolismo , Triticum/microbiologia , Transporte Biológico , Biomassa , Parede Celular/metabolismo , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Triticum/crescimento & desenvolvimento
16.
J Basic Microbiol ; 58(9): 770-781, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29901837

RESUMO

In this study, we collected different levels of altered rocks of a rocky mountain and the adjacent soil and characterized the abundance and weathering effectiveness of Bacillus strains. Based on qPCR and culture-dependent approaches, the gene copies or the numbers of Bacillus strains were significantly higher in the soil than in the altered rocks, while the ratio of the gene copies or the numbers of Bacillus strains to those of total bacteria was higher in the less altered rock, followed by the more altered rock and the soil. The relative abundance of the highly active Al-solubilizing Bacillus strains was higher in the more altered rock, followed by the less altered rock and the soil. Among the Al-solubilizing Bacillus species, 30-36% of them were different between the altered rocks and the soil, however, similar Al-solubilizing Bacillus species were found in the less altered rocks and the more altered ones. The results showed the alteration-related changes in the abundance and mineral weathering effectiveness of Bacillus strains and suggested the ecological adaptation of the mineral-weathering Bacillus populations and their role in mineral weathering in the rock and soil environments.


Assuntos
Bacillus/isolamento & purificação , Bacillus/metabolismo , Minerais/metabolismo , Microbiologia do Solo , Ácidos/metabolismo , Bacillus/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , DNA Bacteriano/genética , Fenômenos Geológicos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
17.
Environ Pollut ; 241: 529-539, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29883954

RESUMO

This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg-1 of Cd + 40 mg kg-1 of As and 2 mg kg-1 of Cd + 60 mg kg-1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH4+concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12-32%) and As (9-29%) uptake and available Cd (15-28%) and As (22-38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH4+ concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils.


Assuntos
Bacillaceae/metabolismo , Comamonadaceae/metabolismo , Metais/metabolismo , Ralstonia/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Compostos de Amônio/metabolismo , Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Solo/química
18.
Ecotoxicol Environ Saf ; 161: 526-533, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29929128

RESUMO

In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions.


Assuntos
Bacillus thuringiensis/metabolismo , Metais Pesados/análise , Raphanus/metabolismo , Serratia liquefaciens/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Biomassa , Metais Pesados/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raphanus/crescimento & desenvolvimento , Rizosfera , Solo/química , Poluentes do Solo/metabolismo
19.
J Basic Microbiol ; 58(7): 633-642, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29732559

RESUMO

In this study, biotite weathering behaviors were compared between mineral-weathering bacteria Enterobacter cloacae S71, mutant strains created by the deletion of poxB, pta, and ackA genes involved in acetate formation, and their complemented strains. Compared to strain S71, a decrease in bacterial growth was observed during the early and middle stages for the mutant ΔpoxB and at the middle and later stages for the mutants Δpta and ΔackA. Dissolved Al and Fe concentrations were lower during the early stage for strain ΔpoxB, at the early or middle stage for strain Δpta, and at the middle and later stages and throughout the weathering process for strain ΔackA, compared to strain S71. Acetate production was depressed during the early stage for strain ΔpoxB, at the early and middle stages for strain Δpta, and throughout the weathering process for strain ΔackA. Overall, the ackA gene exhibited a larger impact on dissolved Fe and acetate concentrations than both the poxB and pta genes. Reduced bacterial growth and lower dissolved Al, Fe, and acetate concentrations recovered by the complemented strains. These results show that strain S71 promoted mineral weathering through the production of acetic acid with distinctive impacts by the genes involved in acetate.


Assuntos
Proteínas de Bactérias/genética , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Minerais/metabolismo , beta-Lactamases/genética , Ácido Acético/metabolismo , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Mutação , Sacarose/metabolismo
20.
J Hazard Mater ; 353: 280-289, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29677530

RESUMO

Two Cd-immobilizing and polyamine-producing bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were characterized for their effects on Cd immobilization, pH, and polyamine production in the solution and the rapeseed biomass and Cd uptake of Brassica napus Qinyou-10 in Cd-contaminated soil. These strains significantly increased pH and reduced water-soluble Cd concentration (25-76%) compared to the controls. Furthermore, strain CL-1 produced more polyamine (71-192%) in the solution than strain X30. Cell surface absorbed Cd content was increased by 23-56% in the presence of strain CL-1 compared to strain X30. The strains significantly increased the rapeseed biomass (12-32%), pH, polyamine content (70-244%), and relative abundance (21-49%) of arginine decarboxylase-producing bacteria (ADPB) of the rhizosphere soils but decreased DTPA-extractable Cd content and rapeseed Cd uptake compared to the controls. Notably, strain CL-1 had higher ability to reduce the rapeseed Cd and DTPA-extractable Cd contents and increase the abundance of ADPB than strain X30. Our results showed the distinct impact of these strains on the rapeseed Cd uptake and available Cd content and suggested that these strains reduced the available Cd and rapeseed Cd uptake by increasing the cell adsorption of Cd, abundance of ADPB, polyamine production, and pH in the rhizosphere soils.


Assuntos
Bacillus thuringiensis/metabolismo , Brassica rapa/metabolismo , Cádmio/metabolismo , Poliaminas/metabolismo , Serratia liquefaciens/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Brassica rapa/crescimento & desenvolvimento , Carboxiliases/metabolismo , Concentração de Íons de Hidrogênio , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...