Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(7): 1682-1700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619897

RESUMO

In this research, ascorbic acid (AA) was used to enhance Fe(II)/Fe(III)-activated permonosulfate (PMS) systems for the degradation of fluoranthene (FLT). AA enhanced the production of ROS in both PMS/Fe(II) and PMS/Fe(III) systems through chelation and reduction and thus improved the degradation performance of FLT. The optimal molar ratio in PMS/Fe(II)/AA/FLT and PMS/Fe(III)/AA/FLT processes were 2/2/4/1 and 5/10/5/1, respectively. In addition, the experimental results on the effect of FLT degradation under different groundwater matrixes indicated that PMS/Fe(III)/AA system was more adaptable to different water quality conditions than the PMS/Fe(II)/AA system. SO4·- was the major reactive oxygen species (ROS) responsible for FLT removal through the probe and scavenging tests in both systems. Furthermore, the degradation intermediates of FLT were analyzed using gas chromatograph-mass spectrometry (GC-MS), and the probable degradation pathways of FLT degradation were proposed. In addition, the removal of FLT was also tested in actual groundwater and the results showed that by increasing the dose and pre-adjusting the solution pH, 88.8 and 100% of the FLT was removed for PMS/Fe(II)/AA and PMS/Fe(III)/AA systems. The above experimental results demonstrated that PMS/Fe(II)/AA and PMS/Fe(III)/AA processes have a great perspective in practice for the rehabilitation of FLT-polluted groundwater.


Assuntos
Compostos Férricos , Fluorenos , Poluentes Químicos da Água , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química , Peróxidos/química , Compostos Ferrosos
2.
Chemosphere ; 338: 139559, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482321

RESUMO

In this study, ferrous sulfide (FeS) was introduced to nano calcium peroxide (nCP)/Fe(III) system to facilitate the generation of Fe(II), more than 90% of naphthalene (NAP) could be removed at a wide pH range of 3-9. As a heterogeneous reductant, FeS could mitigate competitive reactions with reactive oxygen species (ROS), which favored the NAP degradation. As evidenced by scavenging experiments, HO• was the major ROS contributing to NAP degradation. The role of sulfur species (S2-, SO32-, and S2O32-) in nCP/Fe(III) system was investigated with S2O32- showing the preferable reactivity in Fe(III) reduction. In addition, the surface-bound HO• and surface Fe(II) were detected and the role of them on NAP degradation was revealed and concluded that both dissolved and surface Fe(II) contributed to NAP degradation, whereas surface-bound HO• was not superior to solution HO• in degrading NAP. Furthermore, nCP/Fe(III)/FeS system showed high feasibility to different solution matrixes and various types of water as well as the broad-spectrum reactivity to other toxic organic pollutants, exhibiting promise for practical application to remediate complex contaminants.


Assuntos
Ferro , Poluentes Químicos da Água , Espécies Reativas de Oxigênio , Compostos Ferrosos , Peróxidos , Oxirredução , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio
3.
Chemosphere ; 312(Pt 1): 137172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356808

RESUMO

In this study, 90.9% fluoranthene (FLT) was degraded in sodium percarbonate (2Na2CO3·3H2O2, SPC) oxidation system by Fe(II) combined with sulfidated nano zero valent iron (S-nZVI) activation within 60 min in aqueous solution. Scavenging experiments and electron paramagnetic resonance detection suggested that HO•, O2-•, and 1O2 contributed to the removal of FLT in SPC/Fe(II)/S-nZVI system. Based on the FLT degradation intermediates that were analyzed by GC-MS in SPC/Fe(II)/S-nZVI process, three potential FLT degradation pathways were speculated. The removal efficiency of FLT was inhibited with the presence of humic acid (HA) unless the concentration of HA was controlled at 1.0 mg L-1, and the presence of 1.0 mg L-1 HA favored the generation of HO•. The excellent removal performance of FLT (88.6%) could be achieved in actual groundwater by increasing the chemical dosages and adjusting the initial solution pH to acid environment. In soil slurry tests, the optimal reaction time and soil/water ratio were obtained as 24 h and 2/10, respectively, and the desired FLT degradation performances were obtained at pH 3 and 5 with the soil/water ratio of 2/10. This work effectively demonstrates the application potential of SPC/Fe(II)/S-nZVI system for the remediation of PAHs contamination in actual industrial sites.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Solo , Poluentes Químicos da Água/análise , Água , Substâncias Húmicas , Compostos Ferrosos
4.
Environ Sci Pollut Res Int ; 29(35): 53176-53190, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35279749

RESUMO

This study demonstrated that peroxymonosulfate (PMS) activated by Fe(II)/citric acid (CA) could effectively degrade trichloroethylene (TCE) in the presence of Tween-80 (TW-80) or sodium dodecyl sulfate (SDS). Significant TCE removal of 91.6% (90.1%) with 1.3 g L-1 TW-80 (2.3 g L-1 SDS) were achieved at the PMS/Fe(II)/CA/TCE molar ratio of 4/4/4/1 (20/20/20/1). TCE degradation could be greatly elevated by Fe(II) and CA addition, while the existence of surfactants restrained TCE removal and the inhibitory effect increased with the higher surfactant concentration. The tests of the electron paramagnetic resonance (EPR) and reactive radicals scavenging experiments proved that sulfate radical (SO4-•), hydroxyl radical (HO•), and superoxide radical (O2-•) were responsible for TCE degradation and SO4-• acted as the major one. The influences of initial solution pH and inorganic anions k(Cl- and HCO3-) on TCE removal were also investigated. Eventually, TCE removal in actual groundwater tests with surfactants confirmed that the PMS/Fe(II)/CA process has a huge potential of practical application in remediating the groundwater contaminated by TCE after the pretreatment by solubilization using surfactants.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Ácido Cítrico , Compostos Ferrosos , Oxirredução , Peróxidos , Polissorbatos , Tensoativos , Tricloroetileno/análise , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 432: 128693, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338930

RESUMO

Naphthalene (NAP) has received increasing concern due to frequent detection in groundwater and harm to humans. In this study, FeS2 was selected as a novel catalyst to activate nano calcium peroxide (nCP) for NAP degradation. Batch experiments were conducted in a 250 mL glass reactor containing 0.1 mM NAP solution to investigate the effect of reagents dosage, pH, air conditions (with or without N2 purge), and different solution matrixes on NAP degradation. Scavenging tests, electron paramagnetic resonance (EPR) spectrum, and radical probe tests were conducted to identify the main radicals. Results indicated that over 96% NAP was removed in a wide pH range (3.0-9.0) within 180 min at optimal dosage of nCP = 1.0 mM and FeS2 = 5.0 g L-1 in nCP/FeS2 system. Aerobic condition was more beneficial to NAP degradation and the system could tolerate complex solution conditions. Moreover, HO• was determined to be responsible for NAP degradation. NAP degradation intermediates were detected by gas chromatography-mass spectrometry (GC-MS) and the possible degradation pathways were revealed. Finally, the efficient degradation of other organic pollutants confirmed the broad-spectrum reactivity of the nCP/FeS2 system. Overall, these findings strongly demonstrated the potential applicability of nCP/FeS2 system in remediating organic contaminated groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Naftalenos , Oxirredução , Peróxidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...