Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
Heliyon ; 10(13): e33732, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071687

RESUMO

Background: Due to its obscure etiology and diverse clinical manifestations, the treatment of subdural effusion, presents challenges, and the condition's progression to chronic subdural hematoma(cSDH) often necessitates surgical intervention.This study reports on two pediatric patients who developed progressive subdural effusion following minor head injuries. Both cases were notable for the detection of low levels of human herpesvirus in the cerebrospinal fluid, despite other tests returning negative. Immunotherapy led to a dramatic absorption of their subdural effusions, resulting in very positive clinical outcome. Case description: Case 1: This involved a 4-year and 1-month-old boy who was diagnosed with acute cerebellitis due to an unstable gait following a fall. After being discharged, he sustained another minor head injury. A follow-up Magnetic Resonance Imaging (MRI) revealed an increasing and shifting subdural effusion, which was rapidly absorbed following treatment with high doses of methylprednisolone.Case 2: A 6-year and 3-month-old boy presented with headaches following a minor fall. He improved after treatment with intravenous immunoglobulin and low-dose methylprednisolone. The subdural effusion was completely absorbed, and his health remained stable four months after discharge. Conclusion: Our findings suggest that immune inflammation may play a critical role in the development of subdural effusion. The successful treatment outcomes emphasize the potential of immunotherapy as a non-invasive option for managing subdural effusion, particularly in children with unexplained conditions following minor trauma.

2.
Environ Sci Technol ; 58(31): 13986-13994, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38992920

RESUMO

Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.


Assuntos
Carbamazepina , Carbamazepina/toxicidade , Folhas de Planta/efeitos dos fármacos , Estresse Oxidativo , Multiômica
3.
Water Res ; 262: 122112, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047453

RESUMO

Antibiotic pollution in water environment is an emerging threat to plant health. Developing efficient strategies to reassemble the antibiotic-tolerating endophytes will confer fitness benefits on host plants to alleviate antibiotic stress. Here, introducing environmental microbes was proved as a promising approach to reshape the antibiotic-tolerating plant endophytes under antibiotic stress in aquatic microcosms. The introduction of environmental microbes effectively relieved antibiotic-driven perturbation on plant endophytes, with reduced changes in bacterial diversity and differential bacterial taxa and functional genes. Moreover, introducing environmental microbes facilitated the enrichment of endophytic bacterial genera and functional genes related to drug metabolism, which possessed the potentials to degrade antibiotics. In addition, environmental microbes boosted antibiotic-reshaped endophytes to form more stable bacterial networks for stronger antibiotic tolerance. In consequence, the decreased growth inhibition of antibiotics on host plants and enhanced antibiotic removal from microcosms were achieved by introducing environmental microbes. These findings pursue environmental microbes as practical resources to assist plants in reshaping the stress-alleviating endophytes, potentially improving plant tolerance to water pollution.


Assuntos
Antibacterianos , Endófitos , Antibacterianos/farmacologia , Bactérias/metabolismo , Bactérias/genética , Plantas/microbiologia
4.
ACS Synth Biol ; 13(6): 1941-1951, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38780992

RESUMO

Electroactive bacteria, exemplified by Shewanella oneidensis MR-1, have garnered significant attention due to their unique extracellular electron-transfer (EET) capabilities, which are crucial for energy recovery and pollutant conversion. However, the practical application of MR-1 is constrained by its EET efficiency, a key limiting factor, due to the complexity of research methodologies and the challenges associated with the practical use of gene editing tools. To address this challenge, a novel gene integration system, INTEGRATE, was developed, utilizing CRISPR-mediated transposase technologies for precise genomic insertion within the S. oneidensis MR-1 genome. This system facilitated the insertion of extensive gene segments at different sites of the Shewanella genome with an efficiency approaching 100%. The inserted cargo genes could be kept stable on the genome after continuous cultivation. The enhancement of the organism's EET efficiency was realized through two primary strategies: the integration of the phenazine-1-carboxylic acid synthesis gene cluster to augment EET efficiency and the targeted disruption of the SO3350 gene to promote anodic biofilm development. Collectively, our findings highlight the potential of utilizing the INTEGRATE system for strategic genomic alterations, presenting a synergistic approach to augment the functionality of electroactive bacteria within bioelectrochemical systems.


Assuntos
Sistemas CRISPR-Cas , Shewanella , Transposases , Shewanella/genética , Shewanella/metabolismo , Transporte de Elétrons , Transposases/genética , Transposases/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma Bacteriano , Biofilmes , Fontes de Energia Bioelétrica/microbiologia
5.
Nat Commun ; 15(1): 4365, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778052

RESUMO

Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for Cu2-xSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se0 nanoparticles power Cu2-xSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared Cu2-xSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.


Assuntos
Biomineralização , Cobre , Água do Mar , Shewanella , Energia Solar , Shewanella/metabolismo , Cobre/química , Cobre/metabolismo , Água do Mar/microbiologia , Água do Mar/química , Salinidade , Purificação da Água/métodos , Nanopartículas/química , Catálise/efeitos da radiação
6.
ACS Nano ; 18(22): 14617-14628, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38759100

RESUMO

Nanoagrochemicals present promising solutions for augmenting conventional agriculture, while insufficient utilization of nanobiointerfacial interactions hinders their field application. This work investigates the multiscale physiochemical interactions between nanoagrochemicals and rice (Oryza sativa L.) leaves and devises a strategy for elevating targeting efficiency of nanoagrochemicals and stress resilience of rice. We identified multiple deposition behaviors of nanoagrochemicals on hierarchically structured leaves and demonstrated the crucial role of leaf microarchitectures. A transition from the Cassie-Baxter to the Wenzel state significantly changed the deposition behavior from superlattice assembly, ring-shaped aggregation to uniform monolayer deposition. By fine-tuning the formulation properties, we achieved a 415.9-fold surge in retention efficiency, and enhanced the sustainability of nanoagrochemicals by minimizing loss during long-term application. This biointerface design significantly relieved the growth inhibition of Cd(II) pollutant on rice plants with a 95.2% increase in biomass after foliar application of SiO2 nanoagrochemicals. Our research elucidates the intricate interplay between leaf structural attributes, nanobiointerface design, and biological responses of plants, fostering field application of nanoagrochemicals.


Assuntos
Oryza , Folhas de Planta , Oryza/metabolismo , Oryza/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Dióxido de Silício/química , Cádmio/química , Nanoestruturas/química
7.
Water Res ; 257: 121695, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723352

RESUMO

Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.


Assuntos
Enxofre , Poluentes Químicos da Água , Enxofre/química , Poluentes Químicos da Água/química , Compostos de Tungstênio/química , Peróxido de Hidrogênio/química , Catálise , Purificação da Água/métodos , Oxirredução , Ferro/química
8.
Huan Jing Ke Xue ; 45(5): 2939-2951, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629555

RESUMO

Heavy metal pollution in soils of smelting sites is an important environmental problem to be solved urgently. Solidification technology has become one of the mainstream technologies for heavy metal remediation in contaminated sites owing to its shorter remediation time, low cost, and high treatment efficiency. On the basis of summarizing the latest research progress on the remediation of heavy metal pollution in sites by solidification in the past 10 years, this study focused on the mechanisms of solidification technology and analyzed the advantages and disadvantages of different mechanisms (mechanism of inorganic materials, mechanism of organic materials, mechanism of mechanical ball milling, and mechanism of microbial-induced carbonate mineralization (MICP)) and their scope of application. Then, according to the research focus and development trend presented by CiteSpace, the application prospects and limiting factors of MICP technology for the solidification and remediation of heavy metal pollution in sites were summarized from three aspects:the application of MICP in multi-metal remediation, the application of MICP composites in contaminated sites, and the influencing factors of MICP technology application. Finally, the prospects and challenges in solidification technology were put forward in order to provide reference for the future development.

9.
Opt Lett ; 49(8): 1981-1984, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621056

RESUMO

Controlling the output light-intensity and realizing the light-switch function in hollow-core anti-resonant fibers (HC-ARFs) is crucial for their applications in polarizers, lasers, and sensor systems. Here, we theoretically propose a hybrid light-intensity-tunable HC-ARF deposited with the sandwiched graphene/hexagonal boron nitride/graphene based on the typical six-circular-tube and the nested structures. Changing the external drive voltage from 12.3 to 31.8 V, the hybrid HC-ARF experiences a high-low alterative attenuation coefficient with a modulation depth 3.87 and 1.91 dB/cm for the six-circular-tube and nested structures respectively, serving as a well-performance light-switch at the optical communication wavelength of 1.55 µm. This response is attributed to the variation of the Fermi level of graphene and is obviously influenced by the core size, fiber length, and the number of graphene and hBN layers. Moreover, one attenuation dip of the modulation depth was found because of the epsilon-near-zero effect in graphene. Our design provides a feasible paradigm for integrating graphene with anti-resonant fibers and high-performance electro-optic modulators.

10.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416780

RESUMO

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Materiais Biocompatíveis , Engenharia Celular , Transporte de Íons
11.
J Hazard Mater ; 468: 133791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367438

RESUMO

The prevalence of antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (MWTPs) has emerged as a significant environmental concern. Despite advanced treatment processes, high levels of ARGs persist in the secondary effluent from MWTPs, posing ongoing environmental risks. This study explores the potential of gamma-ray irradiation as a novel approach for sterilizing antibiotic-resistant bacteria (ARB) and reducing ARGs in MWTP secondary effluent. Our findings reveal that gamma-ray irradiation at an absorbed dose of 1.6 kGy effectively deactivates all culturable bacteria, with no subsequent revival observed after exposure to 6.4 kGy and a 96-h incubation in darkness at room temperature. The removal efficiencies for a range of ARGs, including tetO, tetA, blaTEM-1, sulI, sulII, and tetW, were up to 90.5% with a 25.6 kGy absorbed dose. No resurgence of ARGs was detected after irradiation. Additionally, this study demonstrates a considerable reduction in the abundances of extracellular ARGs, with the transformation efficiencies of extracellular tetracycline and sulfadiazine resistance genes decreasing by 56.3-81.8% after 25.6 kGy irradiation. These results highlight the effectiveness of gamma-ray irradiation as an advanced and promising method for ARB sterilization and ARG reduction in the secondary effluent of MWTPs, offering a potential pathway to mitigate environmental risks associated with antibiotic resistance.


Assuntos
Genes Bacterianos , Águas Residuárias , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
12.
Sci Data ; 11(1): 63, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212399

RESUMO

The Proboscidea, which includes modern elephants, were once the largest terrestrial animals among extant species. They suffered mass extinction during the Ice Age. As a unique branch on the evolutionary tree, the Proboscidea are of great significance for the study of living animals. In this study, we generate chromosome-scale and haplotype-resolved genome assemblies for two extant Proboscidea species (Asian Elephant, Elephas maximus and African Savannah Elephant, Loxodonta africana) using Pacbio, Hi-C, and DNBSEQ technologies. The assembled genome sizes of the Asian and African Savannah Elephant are 3.38 Gb and 3.31 Gb, with scaffold N50 values of 130 Mb and 122 Mb, respectively. Using Hi-C technology ~97% of the scaffolds are anchored to 29 pseudochromosomes. Additionally, we identify ~9 Mb Y-linked sequences for each species. The high-quality genome assemblies in this study provide a valuable resource for future research on ecology, evolution, biology and conservation of Proboscidea species.


Assuntos
Elefantes , Genoma , Animais , Cromossomos/genética , Elefantes/genética , Haplótipos
14.
Environ Sci Technol ; 58(1): 795-804, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38095914

RESUMO

Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.


Assuntos
Poluentes Ambientais , Oryza , Poluentes do Solo , Ferro/química , Poluentes Ambientais/análise , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Rizosfera , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Solo/química , Compostos Ferrosos/análise , Compostos Ferrosos/metabolismo , Oxigênio/análise
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016847

RESUMO

This paper systematically combed and verified the name, origin, producing area, quality evaluation, harvesting, processing of Euryales Semen in famous classical formulas by consulting relevant ancient materia medica, medical books, prescription books and modern literature. The results showed that Euryales Semen was first collected by materia medica under the name of Jitoushi, and since the Ming dynasty, Qianshi has been used as a proper name and continues to this day, with other aliases such as Yanhuishi. Euryale ferox, a plant of the Nymphaeaceae family, is the same as that used in the past dynasties. However, due to long-term artificial domestication, the varieties vary with the origin, including Beiqian and Suqian. The medicinal part of Euryales Semen is mature seed kernel, its origin of ancient records mainly includes Shandong, Jiangsu, Henan and other places, since the Ming and Qing dynasties, Euryales Semen produced in Suzhou has been highly praised. Since modern times, it has gradually summarized and formed the best quality evaluation method of Euryales Semen with full grains, white cross-section, powdery enough and no broken powder. The harvesting time in the past dynasties was mainly August or in autumn. The main processing methods in the past dynasties included peeling for powder, pounding powder after steaming, drying and frying. Up to now, two mainstream processing methods of cleansing and stir-frying have been formed. Based on the research results, it is recommended that the mature seed kernel of E. ferox be used in famous classical formula Yihuangtang. Combined with the processing requirements of the original formula, it is suggested to refer to the stir-frying method in the general principles of processing of the current edition of Chinese Pharmacopoeia.

16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1019879

RESUMO

Objective Evaluation of the effect and mechanism research of Qi-Shen-Yi-Zhi formula on improving learning and memory ability in mice injected with Aβ1-42 in hippocampus.Methods Alzheimer's disease model mice were constructed by injecting β amyloid peptide 1-42 into hippocampus and treated with water extracts of Qi-Shen-Yi-Zhi formula.The cognitive abilities of mice were assessed using Morris water maze and Y maze tests,which measure learning and memory capabilities.HE staining was used to observe the damage and TUNEL method was used to determine apoptosis of hippocampus.Detection of the expression of oxidative factors,inflammatory factors,and related antioxidant proteins and apoptotic proteins in the hippocampal tissue of a mouse model of dementia.Results Both high-dose and low-dose groups of Qi-Shen-Yi-Zhi formula significantly improved cognitive dysfunction in mice injected with Aβ1-42 in hippocampus,and attenuated the damage and apoptosis of the hippocampus.It also inhibited oxidative stress and downregulated the expressions of inflammatory factors IL-6,IL-1β and TNF-a,increased the expression of antioxidant proteins Nrf2 and HO-1,and regulated the expressions of apoptotic proteins Caspase-9,Caspase-3,Bax and Bcl-2.Conclusion Qi-Shen-Yi-Zhi formula improves the learning and memory abilities of mice injected with Aβ1-42 in hippocampus,which might be related to the attenuation of oxidative stress and neuronal inflammation of hippocampus.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1019880

RESUMO

Objective To study the effective fraction and mechanism of Lycium barbarum leaves on improving learning and memory ability of subacute aging mice induced by D-galactose injection.Methods The model of subacute aging mice was developed by injection of D-galactose subcutaneously,and different extracts of Lycium barbarum leaves were prepared.The effects of the extracts of Lycium barbarum leaves on the learning and memory ability of model mice were evaluated by Y maze experiment and new object recognition experiment.The pathomorphological changes of hippocampus in mice were observed by hematoxylin-eosin and Nissl staining.The levels of brain-derived neurotrophic factor(BDNF),nerve growth factor(NGF),glial cell line-derived neurotrophic factor(GDNF),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),interferon-γ(IFN-γ)and interleukin-10(IL-10)in hippocampus of mice were detected by enzyme-linked immunosorbent assay.The activities of superoxide dismutase(SOD)and the contents of glutathione(GSH)and malondialdehyde(MDA)in hippocampus of mice were detected by related assay kits.Detection of apoptosis in the hippocampal region of mouse brain tissue using the TUNEL method.Western blotting analysis was used to detect the expressions of antioxidant proteins Nrf2,HO-1 and apoptotic proteins Caspase-3,Caspase-9 in hippocampus of mice.Results The water extraction part and 80%alcohol precipitation supernatant part of Lycium barbarum leaves significantly improved the learning and memory ability of model mice,improved the pathological damage of hippocampus in mice,increased the number of Nissl bodies in hippocampus of mice,and promoted the expression of neurotrophic factors BDNF,NGF and GDNF,and promoted the expression of neurotrophic factors BDNF,NGF and GDNF.Pro-inflammatory factors TNF-α,IL-1β and IFN-γ expression declines while anti-inflammatory factor IL-10 expression rises.The activity of SOD and the expression of GSH were increased,and the expression of MDA was decreased.Increase the expression of Nrf2 and HO-1 antioxidant proteins;reduce the expression of Caspase-3 and Caspase-9 apoptosis pathway proteins.Inhibition of apoptosis in the hippocampal region of mouse brain tissue using a model.Conclusion The water extracts and 80%alcohol precipitation supernatant extracts of Lycium barbarum leaves are the effective fractions of Lycium barbarum leaves to improve the learning and memory ability of D-galactose-induced subacute aging mice,and its mechanism might be related to the inhibition of neuronal apoptosis caused by oxidative stress and inflammation.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1028745

RESUMO

AIM To establish a quantitative analysis of multi-components by single-marker(QAMS)method for the simultaneous content determination of gastrodin,parishin E,syringin,parishin B,parishin C,ferulic acid,parishin A,buddleoside,harpagoside and cinnamic acid in Tianma Toufengling Capsules.METHODS The analysis was performed on a 30℃thermostatic GL Science InertsilTM ODS-3 column(150 mm×4.6 mm,5 μm),with the mobile phase comprising of acetonitrile-0.1%phosphoric acid flowing at 1.0 mL/min in a gradient elution manner,and the detection wavelengths were set at 220,280 nm.Syringin was used as an internal standard to calculate the relative correction factors of the other nine constituents,after which the content determination was made.RESULTS Ten constituents showed good linear relationships within their own ranges(r≥0.999 7),whose average recoveries were 98.53%-102.22%with the RSDs of 1.26%-2.68%.The result obtained by QAMS approximated those obtained by external standard method.CONCLUSION This accurate and specific method can be used for the quality control of Tianma Toufengling Capsules.

19.
Sci Total Environ ; 913: 169580, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154648

RESUMO

Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Desinfecção , Purificação da Água/métodos , Oxirredução , Catálise , Antibacterianos , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 57(51): 21835-21845, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085064

RESUMO

The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Genes Bacterianos , Água , Resistência Microbiana a Medicamentos/genética , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA