Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 19(2): 405-417, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28052479

RESUMO

An up-regulated gene derived from Bamboo mosaic virus (BaMV)-infected Nicotiana benthamiana plants was cloned and characterized in this study. BaMV is a single-stranded, positive-sense RNA virus. This gene product, designated as NbTRXh2, was matched with sequences of thioredoxin h proteins, a group of small proteins with a conserved active-site motif WCXPC conferring disulfide reductase activity. To examine how NbTRXh2 is involved in the infection cycle of BaMV, we used the virus-induced gene silencing technique to knock down NbTRXh2 expression in N. benthamiana and inoculated the plants with BaMV. We observed that, compared with control plants, BaMV coat protein accumulation increased in knockdown plants at 5 days post-inoculation (dpi). Furthermore, BaMV coat protein accumulation did not differ significantly between NbTRXh2-knockdown and control protoplasts at 24 hpi. The BaMV infection foci in NbTRXh2-knockdown plants were larger than those in control plants. In addition, BaMV coat protein accumulation decreased when NbTRXh2 was transiently expressed in plants. These results suggest that NbTRXh2 plays a role in restricting BaMV accumulation. Moreover, confocal microscopy results showed that NbTRXh2-OFP (NbTRXh2 fused with orange fluorescent protein) localized at the plasma membrane, similar to AtTRXh9, a homologue in Arabidopsis. The expression of the mutant that did not target the substrates failed to reduce BaMV accumulation. Co-immunoprecipitation experiments revealed that the viral movement protein TGBp2 could be the target of NbTRXh2. Overall, the functional role of NbTRXh2 in reducing the disulfide bonds of targeting factors, encoded either by the host or virus (TGBp2), is crucial in restricting BaMV movement.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Potexvirus/patogenicidade , Tiorredoxinas/metabolismo , Inativação Gênica/fisiologia , Proteínas de Plantas/genética , Tiorredoxinas/genética , Nicotiana/genética
2.
J Exp Bot ; 68(17): 4765-4774, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992255

RESUMO

To establish a successful infection, a virus needs to replicate and move cell-to-cell efficiently. We investigated whether one of the genes upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) inoculation was involved in regulating virus movement. We revealed the gene to be a plasma membrane-associated cation-binding protein 1-like protein, designated NbPCaP1L. The expression of NbPCaP1L in N. benthamiana was knocked down using Tobacco rattle virus-based gene silencing and consequently the accumulation of BaMV increased significantly to that of control plants. Further analysis indicated no significant difference in the accumulation of BaMV in NbPCaP1L knockdown and control protoplasts, suggesting NbPCaP1L may affect cell-to-cell movement of BaMV. Using a viral vector expressing green fluorescent protein in the knockdown plants, the mean area of viral focus, as determined by fluorescence, was found to be larger in NbPCaP1L knockdown plants. Orange fluorescence protein (OFP)-fused NbPCaP1L, NbPCaP1L-OFP, was expressed in N. benthamiana and reduced the accumulation of BaMV to 46%. To reveal the possible interaction of viral protein with NbPCaP1L, we performed yeast two-hybrid and co-immunoprecipitation experiments. The results indicated that NbPCaP1L interacted with BaMV replicase. The results also suggested that NbPCaP1L could trap the BaMV movement RNP complex via interaction with the viral replicase in the complex and so restricted viral cell-to-cell movement.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Nicotiana/genética , Proteínas de Plantas/genética , Potexvirus/fisiologia , Regulação para Cima , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA