Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 19(4): 928-941, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36652143

RESUMO

Neovascularization is a key therapeutic target for cancer treatment. However, anti-angiogenic therapies have shown modest success, as tumors develop rapid resistance to treatment owing to activation of redundant pathways that aid vascularization. We hypothesized that simultaneously targeting different pathways of neovascularization will circumvent the current issue of drug resistance and offer enhanced therapeutic benefits. To test this hypothesis, we made use of two distinct models of tumor-neovascularization, which exhibit equally dense microvasculature but show disparate sensitivity to anti-SDF-1 treatment. Lewis lung carcinoma (LLC) is primarily a vasculogenic-tumor that is associated with HSC functioning as a hemangioblast to generate circulating Endothelial Progenitor Cells contributing to formation of new blood vessels, and responds to anti-SDF-1 treatment. B16F0 melanoma is an angiogenic-tumor that derives new blood vessels from existing vasculature and is resistant to anti-SDF-1 therapy. In this study, we observed increased expression of the angiogenic-factor, Robo1 predominantly expressed on the blood vessels of B16F0 tumor. Blockade of Robo1 by the decoy receptor, RoboN, resulted in reduced microvascular-density and tumor-growth. However, this was associated with mobilization of BM-cells into the B16F0 tumor, thus switching the mode of neovascularization from angiogenic to vasculogenic. The use of a combinatorial treatment of RoboN and the monoclonal anti-SDF-1 antibody effectively attenuated tumor-growth and inhibited both angiogenic and BM-derived microvessels.


Assuntos
Hemangioblastos , Melanoma , Humanos , Proteínas do Tecido Nervoso , Hemangioblastos/metabolismo , Hemangioblastos/patologia , Receptores Imunológicos/uso terapêutico , Neovascularização Patológica/metabolismo
2.
Int J Cancer ; 150(5): 727-740, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536299

RESUMO

Wnt signaling plays an essential role in the initiation and progression of various types of cancer. Besides, the Wnt pathway components have been established as reliable biomarkers and potential targets for cancer therapy. Wnt signaling is categorized into canonical and noncanonical pathways. The canonical pathway is involved in cell survival, proliferation, differentiation and migration, while the noncanonical pathway regulates cell polarity and migration. Apart from its biological role in development and homeostasis, the Wnt pathway has been implicated in several pathological disorders, including cancer. As a result, inhibiting this pathway has been a focus of cancer research with multiple targetable candidates in development. In this review, our focus will be to summarize information about ongoing and completed clinical trials targeting various Wnt pathway components, along with describing current and emerging Wnt targeted therapies. In addition, we will discuss potential opportunities and associated challenges of inhibiting Wnt signaling for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Neoplasias/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Animais , Humanos , Proteínas de Membrana/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , Via de Sinalização Wnt/fisiologia , beta Catenina/antagonistas & inibidores
3.
J Exp Clin Cancer Res ; 37(1): 243, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285892

RESUMO

BACKGROUND: Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice's constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. METHODS: Effect of licorice's constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2', 4'-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. RESULTS: Using a panel of lung cancer cell lines, ISL was identified as the only licorice's constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. CONCLUSION: Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor.


Assuntos
Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Actinas/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Progressão da Doença , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Adesões Focais/efeitos dos fármacos , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Extratos Vegetais/farmacologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
4.
Int J Nanomedicine ; 13: 2869-2881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844670

RESUMO

BACKGROUND: Quercetin (QCT), a naturally occurring flavonoid has a wide array of pharmacological properties such as anticancer, antioxidant and anti-inflammatory activities. QCT has low solubility in water and poor bioavailability, which limited its use as a therapeutic molecule. Polymeric micelles (PMs) is a novel drug delivery system having characteristics like smaller particle size, higher drug loading, sustained drug release, high stability, increased cellular uptake and improved therapeutic potential. In the present study, we have formulated and characterized mixed PMs (MPMs) containing QCT for increasing its anticancer potential. METHODS: The MPMs were prepared by thin film hydration method, and their physicochemical properties were characterized. The in vitro anticancer activity of the MPMs were tested in breast (MCF-7 and MDA-MB-231, epithelial and metastatic cancer cell lines, respectively), and ovarian (SKOV-3 and NCI/ADR, epithelial and multi-drug resistant cell lines, respectively) cancer. RESULTS: The optimal MPM formulations were obtained from Pluronic polymers, P123 and P407 with molar ratio of 7:3 (A16); and P123, P407 and TPGS in the molar ratio of 7:2:1 (A22). The size of the particles before lyophilization (24.83±0.44 nm) and after lyophilisation (37.10±4.23 nm), drug loading (8.75±0.41%), and encapsulation efficiency (87.48±4.15%) for formulation A16 were determined. For formulation A22, the particle size before lyophilization, after lyophilization, drug loading and encapsulation efficiency were 26.37±2.19 nm, 45.88±13.80 nm, 9.01±0.11% and 90.07±1.09%, respectively. The MPMs exhibited sustained release of QCT compared to free QCT as demonstrated from in vitro release experiments. The solubility of QCT was markedly improved compared to pure QCT. The MPMs were highly stable in aqueous media as demonstrated by their low critical micelle concentration. The concentration which inhibited 50% growth (IC50) values of both micellar preparations in all the cancer cell lines were significantly less compared to free QCT. CONCLUSION: Both the MPMs containing QCT could be used for effective delivery to different type of cancer and may be considered for further development.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Micelas , Neoplasias Ovarianas/tratamento farmacológico , Quercetina/administração & dosagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Poloxâmero/química , Polímeros/química , Quercetina/química , Quercetina/farmacologia , Solubilidade
5.
Oncotarget ; 8(31): 50476-50488, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881576

RESUMO

In sporadic colon cancer, colon cancer stem cells (CCSCs) initiate tumorigenesis and may contribute to late disease recurrences and metastases. We previously showed that aldehyde dehydrogenase (ALDH) activity (as indicated by the ALDEFLUOR® assay) is an effective marker for highly enriching CCSCs for further evaluation. Here, we used comparative transcriptome and proteome approaches to identify signaling pathways overrepresented in the CCSC population. We found overexpression of several components of the phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway, including PI3KR2, a regulatory subunit of PI3K. LY294002, a PI3K inhibitor, defined the contribution of the PI3K/Akt/mTOR signaling pathway in CCSCs. LY294002-treated CCSCs showed decreases in proliferation, sphere formation and self-renewal, in phosphorylation-dependent activation of Akt, and in expression of cyclin D1. Inhibition of PI3K in vivo reduced tumorigenicity, increased detection of cleaved caspase 3, an indicator of apoptosis, and elevated expression of the inflammatory chemokine, CXCL8. Collectively, these results indicate that PI3K/Akt/mTOR signaling controls CCSC proliferation and CCSC survival, and suggests that it would be useful to develop therapeutic agents that target this signaling pathway.

6.
Cancers (Basel) ; 9(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677655

RESUMO

During epithelial-to-mesenchymal transition (EMT), cells lose epithelial characteristics and acquire mesenchymal properties. These two processes are genetically separable and governed by distinct transcriptional programs, rendering the EMT outputs highly heterogeneous. Our recent study shows that the mesenchymal products generated by EMT often express multiple pericyte markers, associate with and stabilize blood vessels to fuel tumor growth, thus phenotypically and functionally resembling pericytes. Therefore, some EMT events represent epithelial-to-pericyte transition (EPT). The serum response factor (SRF) plays key roles in both EMT and differentiation of pericytes, and may inherently confer the pericyte attributes on EMT cancer cells. By impacting their intratumoral location and cell surface receptor expression, EPT may enable cancer cells to receive and respond to angiocrine factors produced by the vascular niche, and develop therapy resistance.

7.
Mol Cell Oncol ; 4(1): e1260672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197535

RESUMO

The relevance of epithelial-to-mesenchymal transition (EMT) in cancer is still under debate. Recently, we reported that EMT bestows key pericyte properties on cancer cells and may thus represent epithelial-to-pericyte transition (EPT). Carcinoma cells undergo EPT to stabilize blood vessels and fuel primary tumor growth. Association of EPT cancer cells with vascular niches may also promote resistance to therapy.

8.
J Clin Invest ; 126(11): 4174-4186, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721239

RESUMO

Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-ß and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Células A549 , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Humanos , Células MCF-7 , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/patologia , Pericitos/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
Cell Rep ; 15(12): 2665-78, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27292636

RESUMO

The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression.


Assuntos
Transição Epitelial-Mesenquimal , Histona Acetiltransferases/metabolismo , Histona Desmetilases/metabolismo , Acetilação , Caderinas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexos Multiproteicos/metabolismo , Mutação/genética , Invasividade Neoplásica , Metástase Neoplásica , Nucleossomos/metabolismo
10.
Oncotarget ; 7(18): 25113-24, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-26848621

RESUMO

The Warburg effect, which reflects cancer cells' preference for aerobic glycolysis over glucose oxidation, contributes to tumor growth, progression and therapy resistance. The restraint on pyruvate flux into mitochondrial oxidative metabolism in cancer cells is in part attributed to the inhibition of pyruvate dehydrogenase (PDH) complex. Src is a prominent oncogenic non-receptor tyrosine kinase that promotes cancer cell proliferation, invasion, metastasis and resistance to conventional and targeted therapies. However, the potential role of Src in tumor metabolism remained unclear. Here we report that activation of Src attenuated PDH activity and generation of reactive oxygen species (ROS). Conversely, Src inhibitors activated PDH and increased cellular ROS levels. Src inactivated PDH through direct phosphorylation of tyrosine-289 of PDH E1α subunit (PDHA1). Indeed, Src was the main kinase responsible for PDHA1 tyrosine phosphorylation in cancer cells. Expression of a tyrosine-289 non-phosphorable PDHA1 mutant in Src-hyperactivated cancer cells restored PDH activity, increased mitochondrial respiration and oxidative stress, decreased experimental metastasis, and sensitized cancer cells to pro-oxidant treatment. The results suggest that Src contributes to the Warburg phenotype by inactivating PDH through tyrosine phosphorylation, and the metabolic effect of Src is essential for Src-driven malignancy and therapy resistance. Combination therapies consisting of both Src inhibitors and pro-oxidants may improve anticancer efficacy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Glicólise/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Tirosina/metabolismo
11.
Cancer Lett ; 380(2): 534-544, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-25449784

RESUMO

Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.


Assuntos
Plasticidade Celular , Células Endoteliais/patologia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Neovascularização Patológica , Migração Transendotelial e Transepitelial , Animais , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Fenótipo , Transdução de Sinais , Microambiente Tumoral
12.
Cancer Lett ; 362(1): 70-82, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25827072

RESUMO

The Snail family of transcription factors are core inducers of epithelial-to-mesenchymal transition (EMT). Here we show that the F-box protein FBXO11 recognizes and promotes ubiquitin-mediated degradation of multiple Snail family members including Scratch. The association between FBXO11 and Snai1 in vitro is independent of Snai1 phosphorylation. Overexpression of FBXO11 in mesenchymal cells reduces Snail protein abundance and cellular invasiveness. Conversely, depletion of endogenous FBXO11 in epithelial cancer cells causes Snail protein accumulation, EMT, and tumor invasion, as well as loss of estrogen receptor expression in breast cancer cells. Expression of FBXO11 is downregulated by EMT-inducing signals TGFß and nickel. In human cancer, high FBXO11 levels correlate with expression of epithelial markers and favorable prognosis. The results suggest that FBXO11 sustains the epithelial state and inhibits cancer progression. Inactivation of FBXO11 in mice leads to neonatal lethality, epidermal thickening, and increased Snail protein levels in epidermis, validating that FBXO11 is a physiological ubiquitin ligase of Snail. Moreover, in C. elegans, the FBXO11 mutant phenotype is attributed to the Snail factors as it is suppressed by inactivation/depletion of Snail homologs. Collectively, these findings suggest that the FBXO11-Snail regulatory axis is evolutionarily conserved and critically governs carcinoma progression and mammalian epidermal development.


Assuntos
Neoplasias da Mama/metabolismo , Epiderme/metabolismo , Proteínas F-Box/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/patologia , Caenorhabditis elegans , Progressão da Doença , Epiderme/crescimento & desenvolvimento , Transição Epitelial-Mesenquimal , Proteínas F-Box/genética , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Arginina N-Metiltransferases/genética , Fatores de Transcrição da Família Snail , Ubiquitinação
13.
J Biol Chem ; 288(38): 27680-27691, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23928305

RESUMO

Chromatin readers decipher the functional readouts of histone modifications by recruiting specific effector complexes for subsequent epigenetic reprogramming. The LSD1 (also known as KDM1A) histone demethylase complex modifies chromatin and represses transcription in part by catalyzing demethylation of dimethylated histone H3 lysine 4 (H3K4me2), a mark for active transcription. However, none of its currently known subunits recognizes methylated histones. The Snai1 family transcription factors are central drivers of epithelial-to-mesenchymal transition (EMT) by which epithelial cells acquire enhanced invasiveness. Snai1-mediated transcriptional repression of epithelial genes depends on its recruitment of the LSD1 complex and ensuing demethylation of H3K4me2 at its target genes. Through biochemical purification, we identified the MBT domain-containing protein SFMBT1 as a novel component of the LSD1 complex associated with Snai1. Unlike other mammalian MBT domain proteins characterized to date that selectively recognize mono- and dimethylated lysines, SFMBT1 binds di- and trimethyl H3K4, both of which are enriched at active promoters. We show that SFMBT1 is essential for Snai1-dependent recruitment of LSD1 to chromatin, demethylation of H3K4me2, transcriptional repression of epithelial markers, and induction of EMT by TGFß. Carcinogenic metal nickel is a widespread environmental and occupational pollutant. Nickel alters gene expression and induces EMT. We demonstrate the nickel-initiated effects are dependent on LSD1-SFMBT1-mediated chromatin modification. Furthermore, in human cancer, expression of SFMBT1 is associated with mesenchymal markers and unfavorable prognosis. These results highlight a critical role of SFMBT1 in epigenetic regulation, EMT, and cancer.


Assuntos
Cromatina/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Histona Desmetilases/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Carcinógenos/farmacologia , Cromatina/genética , Cromatina/patologia , Células Epiteliais/patologia , Células HEK293 , Histona Desmetilases/genética , Histonas/genética , Humanos , Metilação , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Níquel/efeitos adversos , Níquel/farmacologia , Proteínas Repressoras/genética , Fatores de Transcrição da Família Snail , Oligoelementos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Cancer Res ; 72(19): 5091-100, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22902411

RESUMO

Ulcerative colitis (UC) increases the risk of colorectal cancer (CRC), but the mechanisms involved in colitis-to-cancer transition (CCT) are not well understood. CCT may involve a inflammation-dysplasia-carcinoma progression sequence compared with the better characterized adenoma-carcinoma progression sequence associated with sporadic CRC. One common thread may be activating mutations in components of the Wnt/ß-catenin signaling pathway, which occur commonly as early events in sporadic CRC. To examine this hypothesis, we evaluated possible associations between Wnt/ß-catenin signaling and CCT based on the cancer stem cell (CSC) model. Wnt/ß-catenin immunostaining indicated that UC patients have a level of Wnt-pathway-active cells that is intermediate between normal colon and CRC. These UC cells exhibiting activation of the Wnt pathway constituted a major subpopulation (52% + 7.21) of the colonic epithelial cells positive for aldehyde dehydrogenase (ALDH), a putative marker of precursor colon CSC (pCCSC). We further fractionated this subpopulation of pCCSC using a Wnt pathway reporter assay. Over successive passages, pCCSCs with the highest Wnt activity exhibited higher clonogenic and tumorigenic potential than pCCSCs with the lowest Wnt activity, thereby establishing the key role of Wnt activity in driving CSC-like properties in these cells. Notably, 5/20 single cell injections of high-Wnt pCCSC resulted in tumor formation, suggesting a correlation with CCT. Attenuation of Wnt/ß-catenin in high-Wnt pCCSC by shRNA-mediated downregulation or pharmacological inhibition significantly reduced tumor growth rates. Overall, the results of our study indicates (i) that early activation of Wnt/ß-catenin signaling is critical for CCT and (ii) that high levels of Wnt/ß-catenin signaling can further demarcate high-ALDH tumor-initiating cells in the nondysplastic epithelium of UC patients. As such, our findings offer plausible diagnostic markers and therapeutic target in the Wnt signaling pathway for early intervention in CCT.


Assuntos
Colite/metabolismo , Neoplasias do Colo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Aldeído Desidrogenase/metabolismo , Animais , Western Blotting , Transformação Celular Neoplásica , Colite/genética , Colite/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Interferência de RNA , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transplante Heterólogo , Carga Tumoral , Células Tumorais Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
15.
FASEB J ; 26(8): 3365-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22611085

RESUMO

Blood vessels are formed during development and tissue repair through a plethora of modifiers that coordinate efficient vessel assembly in various cellular settings. Here we used the yeast 2-hybrid approach and demonstrated a broad affinity of connective tissue growth factor (CCN2/CTGF) to C-terminal cystine knot motifs present in key angiogenic regulators Slit3, von Willebrand factor, platelet-derived growth factor-B, and VEGF-A. Biochemical characterization and histological analysis showed close association of CCN2/CTGF with these regulators in murine angiogenesis models: normal retinal development, oxygen-induced retinopathy (OIR), and Lewis lung carcinomas. CCN2/CTGF and Slit3 proteins worked in concert to promote in vitro angiogenesis and downstream Cdc42 activation. A fragment corresponding to the first three modules of CCN2/CTGF retained this broad binding ability and gained a dominant-negative function. Intravitreal injection of this mutant caused a significant reduction in vascular obliteration and retinal neovascularization vs. saline injection in the OIR model. Knocking down CCN2/CTGF expression by short-hairpin RNA or ectopic expression of this mutant greatly decreased tumorigenesis and angiogenesis. These results provided mechanistic insight into the angiogenic action of CCN2/CTGF and demonstrated the therapeutic potential of dominant-negative CCN2/CTGF mutants for antiangiogenesis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Motivos Nó de Cisteína/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Animais , Carcinoma Pulmonar de Lewis/induzido quimicamente , Motivos Nó de Cisteína/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
16.
Invest Ophthalmol Vis Sci ; 52(12): 8701-10, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21969300

RESUMO

PURPOSE: To investigate the function of connective tissue growth factor (CTGF), a matricellular protein of the CCN (Cyr61/CTGF/Nov) family, in retinal vasculature during development and ischemia. METHODS: CTGF expression was determined using RT-PCR, immunohistochemistry, and transgenic mice carrying CTGF promoter-driven-GFP. CTGF antibody was intraocularly injected into neonates at postnatal day (P)2, and its effect on retinal angiogenesis was analyzed at P4. Transgenic animals expressing GFP regulated by the glial fibrillary acidic protein promoter were used for astrocyte visualization. Retinal vascular occlusion was introduced by rose Bengal and laser photocoagulation on chimeric mice that were reconstituted with GFP+ bone marrow cells. Vascular repair in response to VEGF-A and CTGF was analyzed. RESULTS: A temporal increase in CTGF at both mRNA and protein levels was observed in the ganglion cell layer and inner nuclear layer during development. Endothelial cells and pericytes were identified as the main cellular sources of CTGF during retinal angiogenesis. CTGF stimulated the migration of astrocytes, retinal endothelial cells, and pericytes in vitro. Inhibition of CTGF by specific antibody affected vascular filopodial extension, growth of the superficial vascular plexus, and astrocyte remodeling. In adult mice, CTGF was prominently expressed in the perivascular cells of arteries. CTGF activated bone marrow-derived perivascular cells and promoted fibrovascular membrane formation in the laser-induced adult retinopathy model. CONCLUSIONS: CTGF is expressed in vascular beds and acts on multiple cell types. It is important for vessel growth during early retinal development and promotes the fibrovascular reaction in murine retinal ischemia after laser injury.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Isquemia/fisiopatologia , Doenças Retinianas/fisiopatologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/fisiologia , Animais , Anticorpos/farmacologia , Astrócitos/citologia , Astrócitos/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/imunologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Pericitos/citologia , Pericitos/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Doenças Retinianas/patologia , Vasos Retinianos/citologia
17.
Blood ; 114(19): 4310-9, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19717647

RESUMO

Adult bone marrow (BM) contributes to neovascularization in some but not all settings, and reasons for these discordant results have remained unexplored. We conducted novel comparative studies in which multiple neovascularization models were established in single mice to reduce variations in experimental methodology. In different combinations, BM contribution was detected in ischemic retinas and, to a lesser extent, Lewis lung carcinoma cells, whereas B16 melanomas showed little to no BM contribution. Using this spectrum of BM contribution, we demonstrate the necessity for site-specific expression of stromal-derived factor-1alpha (SDF-1alpha) and its mobilizing effects on BM. Blocking SDF-1alpha activity with neutralizing antibodies abrogated BM-derived neovascularization in lung cancer and retinopathy. Furthermore, secondary transplantation of single hematopoietic stem cells (HSCs) showed that HSCs are a long-term source of neovasculogenesis and that CD133(+)CXCR4(+) myeloid progenitor cells directly participate in new blood vessel formation in response to SDF-1alpha. The varied BM contribution seen in different model systems is suggestive of redundant mechanisms governing postnatal neovasculogenesis and provides an explanation for contradictory results observed in the field.


Assuntos
Quimiocina CXCL12/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/fisiopatologia , Quimiocina CXCL12/antagonistas & inibidores , Células-Tronco Hematopoéticas/citologia , Isquemia/patologia , Isquemia/fisiopatologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/fisiologia , Vasos Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...