Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Immunology ; 168(1): 152-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986643

RESUMO

Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. The deoxyribonucleoside salvage pathway with the rate-limiting enzyme deoxycytidine kinase (dCK) captures extracellular deoxyribonucleosides for use in intracellular deoxyribonucleotide metabolism. Previous studies have shown that deoxyribonucleoside salvage activity is enriched in lymphocytes and required for early lymphocyte development. However, specific roles for the deoxyribonucleoside salvage pathway and dCK in autoimmune diseases such as MS are unknown. Here we demonstrate that dCK activity is necessary for the development of clinical symptoms in the MOG35-55 and MOG1-125 experimental autoimmune encephalomyelitis (EAE) mouse models of MS. During EAE disease, deoxyribonucleoside salvage activity is elevated in the spleen and lymph nodes. Targeting dCK with the small molecule dCK inhibitor TRE-515 limits disease severity when treatments are started at disease induction or when symptoms first appear. EAE mice treated with TRE-515 have significantly fewer infiltrating leukocytes in the spinal cord, and TRE-515 blocks activation-induced B and T cell proliferation and MOG35-55 -specific T cell expansion without affecting innate immune cells or naïve T and B cell populations. Our results demonstrate that targeting dCK limits symptoms in EAE mice and suggest that dCK activity is required for MOG35-55 -specific lymphocyte activation-induced proliferation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Desoxicitidina Quinase/genética , Linfócitos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Cancer Res ; 81(12): 3319-3332, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33863778

RESUMO

Extracellular adenosine in tumors can suppress immune responses and promote tumor growth. Adenosine deaminase 2 (ADA2) converts adenosine into inosine. The role of ADA2 in cancer and whether it can target adenosine for cancer therapy has not been investigated. Here we show that increased ADA2 expression is associated with increased patient survival and enrichment of adaptive immune response pathways in several solid tumor types. Several ADA2 variants were created to improve catalytic efficiency, and PEGylation was used to prolong systemic exposure. In mice, PEGylated ADA2 (PEGADA2) inhibited tumor growth by targeting adenosine in an enzyme activity-dependent manner and thereby modulating immune responses. These findings introduce endogenous ADA2 expression as a prognostic factor and PEGADA2 as a novel immunotherapy for cancer. SIGNIFICANCE: This study identifies ADA2 as a prognostic factor associated with prolonged cancer patient survival and introduces the potential of enzymatic removal of adenosine with engineered ADA2 for cancer immunotherapy.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/prevenção & controle , Adenosina Desaminase/genética , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/enzimologia , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncotarget ; 10(61): 6561-6576, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31762938

RESUMO

Hyaluronan accumulation in the tumor microenvironment is associated with poor prognosis in several solid human cancers. To understand the role of stromal hyaluronan in tumor progression, we engineered 3T3HAS3, a hyaluronan-producing fibroblast cell line, by lentiviral transduction of Balb/c 3T3 cells with the human hyaluronan synthase 3 (HAS3) gene. 3T3HAS3 cells significantly enhanced tumor growth when co-grafted with MDA-MB-468 cells in nude mice. Immunohistochemical analysis of the xenograft tumors showed that MDA-MB-468 cells were surrounded by hyaluronan-accumulating stroma, closely resembling the morphology observed in human breast cancer specimens. Tumor growth of MDA-MB-468 + 3T3HAS3 co-grafts was greatly reduced upon hyaluronan degradation by lentiviral transduction of a human hyaluronidase gene in 3T3HAS3 cells, or by systemic administration of pegvorhyaluronidase alfa (PEGPH20). In contrast, the growth of the co-graft tumors was not inhibited when CD44 expression was reduced or ablated by small hairpin RNA-mediated CD44 knockdown in MDA-MB-468 cells, CD44 CRISPR knockout in 3T3HAS3 cells, or by grafting these cells in CD44 knockout nude mice. Collectively, these data demonstrate that tumor growth of an engineered xenograft breast cancer model with hyaluronan-accumulating stroma can be dependent on hyaluronan and independent of CD44.

6.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672936

RESUMO

Human cancer cells were eradicated by adoptive transfer of T cells transduced with a chimeric antigen receptor (CAR) made from an antibody (237Ab) that is highly specific for the murine Tn-glycosylated podoplanin (Tn-PDPN). The objectives were to determine the specificity of these CAR-transduced T (CART) cells and the mechanism for the absence of relapse. We show that although the 237Ab bound only to cell lines expressing murine Tn-PDPN, the 237Ab-derived 237CART cells lysed multiple different human and murine cancers not predicted by the 237Ab binding. Nevertheless, the 237CART cell reactivities remained cancer specific because all recognitions were dependent on the Tn glycosylation that resulted from COSMC mutations that were not present in normal tissues. While Tn was required for the recognition by 237CART, Tn alone was not sufficient for 237CART cell activation. Activation of 237CART cells required peptide backbone recognition but tolerated substitutions of up to 5 of the 7 amino acid residues in the motif recognized by 237Ab. Together, these findings demonstrate what we believe is a new principle whereby simultaneous recognition of multiple independent Tn-glycopeptide antigens on a cancer cell makes tumor escape due to antigen loss unlikely.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Transferência Adotiva , Animais , Antígenos Glicosídicos Associados a Tumores/imunologia , Linhagem Celular , Glicosilação , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Neoplasias/patologia
7.
Cell ; 179(1): 27-32, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31519309

RESUMO

Receiving the Lasker award for Clinical Medical Research is a staggering event. Perhaps equally staggering is the fact that as many as 2 million women worldwide have now been treated with Herceptin (trastuzumab), many of whom benefited from the treatment. This accomplishment is wonderfully rewarding for everyone who has been involved.

9.
Clin Cancer Res ; 24(19): 4798-4807, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084839

RESUMO

Purpose: The tumor microenvironment (TME) evolves to support tumor progression. One marker of more aggressive malignancy is hyaluronan (HA) accumulation. Here, we characterize biological and physical changes associated with HA-accumulating (HA-high) tumors.Experimental Design: We used immunohistochemistry, in vivo imaging of tumor pH, and microdialysis to characterize the TME of HA-high tumors, including tumor vascular structure, hypoxia, tumor perfusion by doxorubicin, pH, content of collagen. and smooth muscle actin (α-SMA). A novel method was developed to measure real-time tumor-associated soluble cytokines and growth factors. We also evaluated biopsies of murine and pancreatic cancer patients to investigate HA and collagen content, important contributors to drug resistance.Results: In immunodeficient and immunocompetent mice, increasing tumor HA content is accompanied by increasing collagen content, vascular collapse, hypoxia, and increased metastatic potential, as reflected by increased α-SMA. In vivo treatment of HA-high tumors with PEGylated recombinant human hyaluronidase (PEGPH20) dramatically reversed these changes and depleted stores of VEGF-A165, suggesting that PEGPH20 may also diminish the angiogenic potential of the TME. Finally, we observed in xenografts and in pancreatic cancer patients a coordinated increase in HA and collagen tumor content.Conclusions: The accumulation of HA in tumors is associated with high tIP, vascular collapse, hypoxia, and drug resistance. These findings may partially explain why more aggressive malignancy is observed in the HA-high phenotype. We have shown that degradation of HA by PEGPH20 partially reverses this phenotype and leads to depletion of tumor-associated VEGF-A165. These results encourage further clinical investigation of PEGPH20. Clin Cancer Res; 24(19); 4798-807. ©2018 AACR.


Assuntos
Carcinogênese/genética , Colágeno/metabolismo , Hialuronoglucosaminidase/administração & dosagem , Neoplasias/terapia , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Colágeno/genética , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/genética , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Glycobiology ; 28(12): 958-967, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007349

RESUMO

Modification of hyaluronan (HA) accumulation has been shown to play a key role in regulating inflammatory processes linked to the progression of multiple sclerosis (MS). The aim of this study was to characterize the enzymatic activity involved in HA degradation observed within focal demyelinating lesions in the experimental autoimmune encephalomyelitis (EAE) animal model. EAE was induced in 3-month-old female C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein 33-35 (MOG33-35) peptide. The mice were monitored for 21 days. Formalin-fixed paraffin-embedded tissue from control and EAE mice were labeled with an immunoadhesin against HA, antibodies against KIAA1199 and glial fibrillary acidic protein, a marker for astrocytes. In situ hybridization was conducted using a KIAA1199 nucleic acid probe. In histologic sections of spinal cord from EAE mice, abnormal HA accumulation was observed in the close vicinity of the affected areas, whereas HA was totally degraded within the focal loci of damaged tissue. KIAA1199 immunoreactivity was exclusively associated with focal loci in damaged white columns of the spinal cord. KIAA1199 was mainly expressed by activated astrocytes that invaded damaged tissue. Similar findings were observed in tissue from an MS patient. Here, we show that KIAA1199, a protein that plays a role in a HA degradation pathway independent of the canonical hyaluronidases such as PH20, is specifically expressed in tissue lesions in which HA is degraded. KIAA1199 expression by activated astrocytes may explain the focal HA degradation observed during progression of MS and could represent a possible new therapeutic target.


Assuntos
Ácido Hialurônico/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
12.
Br J Cancer ; 118(2): 153-161, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949957

RESUMO

BACKGROUND: Hyaluronan accumulation in tumour stroma is associated with reduced survival in preclinical cancer models. PEGPH20 degrades hyaluronan to facilitate tumour access for cancer therapies. Our objective was to assess safety and antitumour activity of PEGPH20 in patients with advanced solid tumours. METHODS: In HALO-109-101 (N=14), PEGPH20 was administered intravenously once or twice weekly (0.5 or 50 µg kg-1) or once every 3 weeks (0.5-1.5 µg kg-1). In HALO-109-102 (N=27), PEGPH20 was administered once or twice weekly (0.5-5.0 µg kg-1), with dexamethasone predose and postdose. RESULTS: Dose-limiting toxicities included grade ⩾3 myalgia, arthralgia, and muscle spasms; the maximum tolerated dose was 3.0 µg kg-1 twice weekly. Plasma hyaluronan increased in a dose-dependent manner, achieving steady state by Day 8 in multidose studies. A decrease in tumour hyaluronan level was observed in 5 of the 6 patients with pretreatment and posttreatment tumour biopsies. Exploratory imaging showed changes in tumour perfusion and decreased tumour metabolic activity, consistent with observations in animal models. CONCLUSIONS: The tumour stroma has emerging importance in the development of cancer therapeutics. PEGPH20 3.0 µg kg-1 administered twice weekly is feasible in patients with advanced cancers; exploratory analyses indicate antitumour activity supporting further evaluation of PEGPH20 in solid tumours.


Assuntos
Hialuronoglucosaminidase/administração & dosagem , Neoplasias/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Dexametasona/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Ácido Hialurônico/sangue , Hialuronoglucosaminidase/efeitos adversos , Hialuronoglucosaminidase/sangue , Hialuronoglucosaminidase/farmacocinética , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/farmacocinética
13.
Clin Med (Lond) ; 17(3): 220-232, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28572223

RESUMO

Monoclonal antibody therapeutics have been approved for over 30 targets and diseases, most commonly cancer. Antibodies have become the new backbone of the pharmaceutical industry, which previously relied on small molecules. Compared with small molecules, monoclonal antibodies (mAbs) have exquisite target selectivity and hence less toxicity as a result of binding other targets. The clinical value of both mAbs and ligand traps has been proven. New applications of mAbs are being tested and mAbs have now been designed to target two (bi-specific, eg TNF-α and IL-17) or more targets simultaneously, augmenting their therapeutic potential. Because of space limitations and the wide ranging scope of this review there are regrettably, but inevitably, omissions and missing citations. We have chosen to highlight the first successes in inflammatory diseases and cancer, but a broader overview of approved mAbs and related molecules can be found in Table 1.


Assuntos
Anticorpos Monoclonais , Terapia Biológica , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Humanos
14.
Ann Clin Transl Neurol ; 4(3): 191-211, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275653

RESUMO

OBJECTIVE: Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. METHODS: Steady-state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. RESULTS: BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. INTERPRETATION: We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, "BTH" effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.

15.
Clin Cancer Res ; 22(12): 2848-54, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26813359

RESUMO

PURPOSE: This phase Ib study evaluated the safety and tolerability of PEGylated human recombinant hyaluronidase (PEGPH20) in combination with gemcitabine (Gem), and established a phase II dose for patients with untreated stage IV metastatic pancreatic ductal adenocarcinoma (PDA). Objective response rate and treatment efficacy using biomarker and imaging measurements were also evaluated. EXPERIMENTAL DESIGN: Patients received escalating intravenous doses of PEGPH20 in combination with Gem using a standard 3+3 dose-escalation design. In cycle 1 (8 weeks), PEGPH20 was administrated twice weekly for 4 weeks, then once weekly for 3 weeks; Gem was administrated once weekly for 7 weeks, followed by 1 week off treatment. In each subsequent 4-week cycle, PEGPH20 and Gem were administered once weekly for 3 weeks, followed by 1 week off. Dexamethasone (8 mg) was given pre- and post-PEGPH20 administration. Several safety parameters were evaluated. RESULTS: Twenty-eight patients were enrolled and received PEGPH20 at 1.0 (n = 4), 1.6 (n = 4), or 3.0 µg/kg (n = 20), respectively. The most common PEGPH20-related adverse events were musculoskeletal and extremity pain, peripheral edema, and fatigue. The incidence of thromboembolic events was 29%. Median progression-free survival (PFS) and overall survival (OS) rates were 5.0 and 6.6 months, respectively. In 17 patients evaluated for pretreatment tissue hyaluronan (HA) levels, median PFS and OS rates were 7.2 and 13.0 months for "high"-HA patients (n = 6), and 3.5 and 5.7 months for "low"-HA patients (n = 11), respectively. CONCLUSIONS: PEGPH20 in combination with Gem was well tolerated and may have therapeutic benefit in patients with advanced PDA, especially in those with high HA tumors. Clin Cancer Res; 22(12); 2848-54. ©2016 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Hialuronoglucosaminidase/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/uso terapêutico , Dexametasona/uso terapêutico , Intervalo Livre de Doença , Feminino , Humanos , Hialuronoglucosaminidase/efeitos adversos , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Federação Russa , Resultado do Tratamento , Estados Unidos , Gencitabina
16.
Front Oncol ; 5: 192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380222

RESUMO

Hyaluronan (HA) has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high-extracellular HA content (HA-high) being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20) has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA-depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several cancers.

17.
Clin Cancer Res ; 21(15): 3561-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695692

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is characterized by high levels of fibrosis, termed desmoplasia, which is thought to hamper the efficacy of therapeutics treating PDAC. Our primary focus was to evaluate differences in the extent of desmoplasia in primary tumors and metastatic lesions. As metastatic burden is a primary cause for mortality in PDAC, the extent of desmoplasia in metastases may help to determine whether desmoplasia targeting therapeutics will benefit patients with late-stage, metastatic disease. EXPERIMENTAL DESIGN: We sought to assess desmoplasia in metastatic lesions of PDAC and compare it with that of primary tumors. Fifty-three patients' primaries and 57 patients' metastases were stained using IHC staining techniques. RESULTS: We observed a significant negative correlation between patient survival and extracellular matrix deposition in primary tumors. Kaplan-Meier curves for collagen I showed median survival of 14.6 months in low collagen patients, and 6.4 months in high-level patients (log rank, P < 0.05). Low-level hyaluronan patients displayed median survival times of 24.3 months as compared with 9.3 months in high-level patients (log rank, P < 0.05). Our analysis also indicated that extracellular matrix components, such as collagen and hyaluronan, are found in high levels in both primary tumors and metastatic lesions. The difference in the level of desmoplasia between primary tumors and metastatic lesions was not statistically significant. CONCLUSIONS: Our results suggest that both primary tumors and metastases of PDAC have highly fibrotic stroma. Thus, stromal targeting agents have the potential to benefit PDAC patients, even those with metastatic disease.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/patologia , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Intervalo Livre de Doença , Matriz Extracelular/patologia , Feminino , Humanos , Ácido Hialurônico/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Análise Serial de Tecidos
18.
Mol Cancer Ther ; 14(2): 523-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512619

RESUMO

Despite tremendous progress in cancer immunotherapy for solid tumors, clinical success of monoclonal antibody (mAb) therapy is often limited by poorly understood mechanisms associated with the tumor microenvironment (TME). Accumulation of hyaluronan (HA), a major component of the TME, occurs in many solid tumor types, and is associated with poor prognosis and treatment resistance in multiple malignancies. In this study, we describe that a physical barrier associated with high levels of HA (HA(high)) in the TME restricts antibody and immune cell access to tumors, suggesting a novel mechanism of in vivo resistance to mAb therapy. We determined that approximately 60% of HER2(3+) primary breast tumors and approximately 40% of EGFR(+) head and neck squamous cell carcinomas are HA(high), and hypothesized that HA(high) tumors may be refractory to mAb therapy. We found that the pericellular matrix produced by HA(high) tumor cells inhibited both natural killer (NK) immune cell access to tumor cells and antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. Depletion of HA by PEGPH20, a pegylated recombinant human PH20 hyaluronidase, resulted in increased NK cell access to HA(high) tumor cells, and greatly enhanced trastuzumab- or cetuximab-dependent ADCC in vitro. Furthermore, PEGPH20 treatment enhanced trastuzumab and NK cell access to HA(high) tumors, resulting in enhanced trastuzumab- and NK cell-mediated tumor growth inhibition in vivo. These results suggest that HA(high) matrix in vivo may form a barrier inhibiting access of both mAb and NK cells, and that PEGPH20 treatment in combination with anticancer mAbs may be an effective adjunctive therapy for HA(high) tumors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ácido Hialurônico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Ácido Hialurônico/farmacologia , Células Matadoras Naturais/metabolismo , Camundongos Nus , Neoplasias/patologia , Receptor ErbB-2/metabolismo , Trastuzumab , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomed Res Int ; 2014: 817613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147816

RESUMO

Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extracellular hyaluronan accumulation. Treatment with pegylated human recombinant hyaluronidase (PEGPH20) removed extracellular hyaluronan and dramatically decreased the growth rate of BxPC-3 HAS3 tumors compared to parental tumors. PEGPH20 had a weaker effect on HAS2-overexpressing tumors which grew more slowly and contained both extracellular and intracellular hyaluronan. Accumulation of hyaluronan was associated with loss of plasma membrane E-cadherin and accumulation of cytoplasmic ß-catenin, suggesting disruption of adherens junctions. PEGPH20 decreased the amount of nuclear hypoxia-related proteins and induced translocation of E-cadherin and ß-catenin to the plasma membrane. Translocation of E-cadherin was also seen in tumors from a transgenic mouse model of pancreatic cancer and in a human non-small cell lung cancer sample from a patient treated with PEGPH20. In conclusion, hyaluronan accumulation by HAS3 favors pancreatic cancer growth, at least in part by decreasing epithelial cell adhesion, and PEGPH20 inhibits these changes and suppresses tumor growth.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/fisiologia , Animais , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Camundongos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...