Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 23(10): 2955-61, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23566517
2.
Bioorg Med Chem Lett ; 21(18): 5475-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21782426

RESUMO

The discovery, of a series of 2-Cl-5-heteroaryl-benzamide antagonists of the P2X(7) receptor via parallel medicinal chemistry is described. Initial analogs suffered from poor metabolic stability and low Vd(ss). Multi parametric optimization led to identification of pyrazole 39 as a viable lead with excellent potency and oral bioavailability. Further attempts to improve the low Vd(ss) of 39 via introduction of amines led to analogs 40 and 41 which maintained the favorable pharmacology profile of 39 and improved Vd(ss) after iv dosing. But these analogs suffered from poor oral absorption, probably driven by poor permeability.


Assuntos
Benzamidas/farmacologia , Descoberta de Drogas , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2X/química , Estereoisomerismo , Relação Estrutura-Atividade
3.
Chem Res Toxicol ; 20(12): 1954-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17935300

RESUMO

The current study examined the bioactivation potential of a nonpeptidyl thrombopoietin receptor agonist, 1-(3-chloro-5-((4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-yl)carbamoyl)pyridine-2-yl)piperidine-4-carboxylic acid (1), containing a 2-carboxamido-4-arylthiazole moiety in the core structure. Toxicological risks arising from P450-catalyzed C4-C5 thiazole ring opening in 1 via the epoxidation-->diol sequence were alleviated, since mass spectrometric analysis of human liver microsome and/or hepatocyte incubations of 1 did not reveal the formation of reactive acylthiourea and/or glyoxal metabolites, which are prototypic products derived from thiazole ring scission. However, 4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-amine (2), the product of hydrolysis of 1 in human liver microsomes, hepatocytes, and plasma, underwent oxidative bioactivation in human liver microsomes, since trapping studies with glutathione led to the formation of two conjugates derived from the addition of the thiol nucleophile to 2 and a thiazole- S-oxide metabolite of 2. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in both conjugates was the C5 position in the thiazole ring. Based on the structures of the glutathione conjugates, two bioactivation pathways are proposed, one involving beta-elimination of an initially formed hydroxylamine metabolite and the other involving direct two-electron oxidation of the electron-rich 2-aminothiazole system to electrophilic intermediates. This mechanistic insight into the bioactivation process allowed the development of a rational chemical intervention strategy that involved blocking the C5 position with a fluorine atom or replacing the thiazole ring with a 1,2,4-thiadiazole group. These structural changes not only abrogated the bioactivation liability associated with 1 but also resulted in compounds that retained the attractive pharmacological and pharmacokinetic attributes of the prototype agent.


Assuntos
Piridinas/farmacologia , Receptores de Trombopoetina/agonistas , Tiazóis/química , Animais , Disponibilidade Biológica , Biotransformação , Linhagem Celular , Estabilidade de Medicamentos , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Piridinas/sangue , Piridinas/química , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Trombopoetina/genética , Tiazóis/sangue , Tiazóis/metabolismo , Tiazóis/farmacologia , Transfecção
4.
Bioorg Med Chem Lett ; 17(19): 5447-54, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17707640

RESUMO

A series of pyrimidine benzamide-based thrombopoietin receptor agonists is described. The lead molecule contains a 2-amino-5-unsubstituted thiazole, a group that has been associated with idiosyncratic toxicity. The potential for metabolic oxidation at C-5 of the thiazole, the likely source of toxic metabolites, was removed by substitution at C-5 or by replacing the thiazole with a thiadiazole. Potency in the series was improved by modifying the substituents on the pyrimidine and/or on the thiazole or thiadiazole pendant aryl ring. In vivo examination revealed that compounds from the series are not highly bioavailable. This is attributed to low solubility and poor permeability.


Assuntos
Benzamidas/síntese química , Benzamidas/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Receptores de Trombopoetina/agonistas , Antígenos CD34/metabolismo , Benzamidas/farmacocinética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Físico-Química , Simulação por Computador , Reações Cruzadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Peso Molecular , Pirimidinas/farmacocinética , Solubilidade , Relação Estrutura-Atividade
6.
J Immunol ; 176(5): 3141-8, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16493073

RESUMO

We previously described the in vitro characteristics of the potent and selective CCR1 antagonist, CP-481,715. In addition to being selective for CCR1 vs other chemokine receptors, CP-481,715 is also specific for human CCR1 (hCCR1), preventing its evaluation in classical animal models. To address this, we generated mice whereby murine CCR1 was replaced by hCCR1 (knockin) and used these animals to assess the anti-inflammatory properties of CP-481,715. Cells isolated from hCCR1 knockin mice were shown to express hCCR1 and migrate in response to both murine CCR1 and hCCR1 ligands. Furthermore, this migration is inhibited by CP-481,715 at dose levels comparable to those obtained with human cells. In animal models of cell infiltration, CP-481,715 inhibited CCL3-induced neutrophil infiltration into skin or into an air pouch with an ED50 of 0.2 mg/kg. CP-481,715 did not inhibit cell infiltration in wild-type animals expressing murine CCR1. In a more generalized model of inflammation, delayed-type hypersensitivity, CP-481,715 significantly inhibited footpad swelling and decreased the amount of IFN-gamma and IL-2 produced by isolated spleen cells from sensitized animals. It did not, however, induce tolerance to a subsequent challenge. These studies illustrate the utility of hCCR1 knockin animals to assess the activity of human specific CCR1 antagonists; demonstrate the ability of the CCR1 antagonist CP-481,715 to inhibit cell infiltration, inflammation, and Th1 cytokine responses in these animals; and suggest that CP-481,715 may be useful to modulate inflammatory responses in human disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibição de Migração Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Hipersensibilidade Tardia/patologia , Quinoxalinas/farmacologia , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocinas CC/fisiologia , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Humanos , Hipersensibilidade Tardia/tratamento farmacológico , Hipersensibilidade Tardia/genética , Proteínas Inflamatórias de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Receptores CCR1 , Células-Tronco/imunologia , Células-Tronco/patologia , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
8.
J Biol Chem ; 278(42): 40473-80, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12909630

RESUMO

The chemokines CCL3 and CCL5, as well as their shared receptor CCR1, are believed to play a role in the pathogenesis of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and transplant rejection. In this study we describe the pharmacological properties of a novel small molecular weight CCR1 antagonist, CP-481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methyloctyl]amide). Radiolabeled binding studies indicate that CP-481,715 binds to human CCR1 with a Kd of 9.2 nm and displaces 125I-labeled CCL3 from CCR1-transfected cells with an IC50 of 74 nm. CP-481,715 lacks intrinsic agonist activity but fully blocks the ability of CCL3 and CCL5 to stimulate receptor signaling (guanosine 5'-O-(thiotriphosphate) incorporation; IC50 = 210 nm), calcium mobilization (IC50 = 71 nm), monocyte chemotaxis (IC50 = 55 nm), and matrix metalloproteinase 9 release (IC50 = 54 nm). CP-481,715 retains activity in human whole blood, inhibiting CCL3-induced CD11b up-regulation and actin polymerization (IC50 = 165 and 57 nm, respectively) on monocytes. Furthermore, it behaves as a competitive and reversible antagonist. CP-481,715 is >100-fold selective for CCR1 as compared with a panel of G-protein-coupled receptors including related chemokine receptors. Evidence for its potential use in human disease is suggested by its ability to inhibit 90% of the monocyte chemotactic activity present in 11/15 rheumatoid arthritis synovial fluid samples. These data illustrate that CP-481,715 is a potent and selective antagonist for CCR1 with therapeutic potential for rheumatoid arthritis and other inflammatory diseases.


Assuntos
Inflamação , Quinoxalinas/química , Quinoxalinas/farmacologia , Receptores de Quimiocinas/antagonistas & inibidores , Actinas/metabolismo , Artrite Reumatoide/metabolismo , Antígeno CD11b/biossíntese , Cálcio/metabolismo , Linhagem Celular , Quimiocinas/metabolismo , Quimiotaxia , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , Metaloproteinase 9 da Matriz/metabolismo , Modelos Químicos , Monócitos/metabolismo , Ligação Proteica , Receptores CCR1 , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...