Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396482

RESUMO

Invasive pulmonary aspergillosis (IPA) caused by Aspergillus fumigatus is a life-threatening lung disease of immunocompromised patients. Diagnosis currently relies on non-specific chest CT, culture of the fungus from invasive lung biopsy, and detection of the cell wall carbohydrate galactomannan (GM) in serum or in BAL fluids recovered during invasive bronchoscopy. Urine provides an ideal bodily fluid for the non-invasive detection of pathogen biomarkers, with current urine-based immunodiagnostics for IPA focused on GM. Surrogate protein biomarkers might serve to improve disease detection. Here, we report the development of a monoclonal antibody (mAb), PD7, which is specific to A. fumigatus and related species in the section Fumigati, and which binds to its 18 kDa ribotoxin Asp f I. Using PD7, we show that the protein is secreted during hyphal development, and so represents an ideal candidate for detecting invasive growth. We have developed a lateral-flow device (Afu-LFD®) incorporating the mAb which has a limit of detection of ~15 ng Asp f I/mL urine. Preliminary evidence of the test's diagnostic potential is demonstrated with urine from a patient with acute lymphoid leukaemia with probable IPA. The Afu-LFD® therefore provides a potential novel opportunity for non-invasive urine-based detection of IPA caused by A. fumigatus.

2.
PLoS One ; 8(5): e64042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667697

RESUMO

Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Animais , Cerebelo/enzimologia , Cérebro/enzimologia , Eletroforese em Gel de Poliacrilamida , Hipocampo/enzimologia , Hidrólise , Masculino , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
3.
Cell Biochem Biophys ; 60(3): 173-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21132543

RESUMO

Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1-42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with ß-amyloid and tau proteins in brain tissue sections from Alzheimer's disease patients.


Assuntos
Técnica Indireta de Fluorescência para Anticorpo/métodos , Corpos de Inclusão/metabolismo , Proteínas/química , Autofagia , Benzotiazóis , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Leupeptinas/química , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Dobramento de Proteína , Proteínas/metabolismo , Tiazóis/química , Ubiquitinação
4.
Nat Commun ; 1: 13, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20975683

RESUMO

The ubiquitin-like modifier FAT10 targets proteins for degradation by the proteasome and is activated by the E1 enzyme UBA6. In this study, we identify the UBA6-specific E2 enzyme (USE1) as an interaction partner of FAT10. Activated FAT10 can be transferred from UBA6 onto USE1 in vitro, and endogenous USE1 and FAT10 can be coimmunoprecipitated from intact cells. Small interfering RNA-mediated downregulation of USE1 mRNA resulted in a strong reduction of FAT10 conjugate formation under endogenous conditions, suggesting that USE1 is a major E2 enzyme in the FAT10 conjugation cascade. Interestingly, USE1 is not only the first E2 enzyme but also the first known substrate of FAT10 conjugation, as it was efficiently auto-FAT10ylated in cis but not in trans.


Assuntos
Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Células HEK293 , Humanos , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Proteínas SNARE , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitinas/genética , Proteínas de Transporte Vesicular
5.
Trends Cell Biol ; 20(7): 391-401, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427185

RESUMO

The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Fenômenos Fisiológicos Celulares , Humanos , Chaperonas Moleculares/análise , Proteínas Ubiquitinadas/metabolismo
6.
Neurosci Lett ; 460(3): 205-8, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19500650

RESUMO

The major human neurodegenerative diseases are characterised by ubiquitin-positive intraneuronal inclusions, however the precise nature of the ubiquitin modifications in these structures is unclear. Using a monoclonal antibody specific for Lys63-linked polyubiquitin we have performed the first immunohistochemical analysis of linkage-specific ubiquitination in vivo associated with neurodegeneration. Immunoreactivity was detected within the pathological lesions of Alzheimer's, Huntington's and Parkinson's disease brains, although staining of Lewy bodies in the substantia nigra in Parkinson's disease was rare, indicating a selective involvement of Lys63-linked polyubiquitin in inclusion biogenesis in this disorder. Immunoreactivity was also a feature in neurons of proteasome-depleted mice, suggesting a proteasomal contribution to the degradation of Lys63-linked polyubiquitinated proteins in vivo.


Assuntos
Lisina/metabolismo , Doenças Neurodegenerativas/metabolismo , Poliubiquitina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Imuno-Histoquímica , Corpos de Lewy/metabolismo , Camundongos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Eur J Pharm Biopharm ; 72(1): 219-25, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19027853

RESUMO

Oligo-arginines are cell-penetrating peptides and find use as carriers for transportation of various membrane-impermeable biopharmaceuticals into target cells. We have found that oligo-arginines of a length of 4-10 amino acids, but especially (Arg)(8), are able to inhibit the major intracellular proteolytic system, the proteasome, with mixed-type inhibition characteristics. The IC(50) values of (Arg)(8) for the proteasomal chymotrypsin-like and caspase-like activities are approximately 100 and 200 nM, respectively. The inhibition of the trypsin-like activity never exceeds 50% even at micromolar concentrations. (Arg)(8) also inhibits 20S proteasome/PA28 complexes as well as 26S proteasomes, although with a decreased efficiency. Due to its cell membrane-penetrating capability, incubation of HeLa cells in the presence of (Arg)(8) resulted in an impaired activity of proteasomes going along with an accumulation of high-molecular mass ubiquitin-conjugated proteins, the preferred substrates of 26S proteasomes. The in vivo susceptibility of the three proteasome activities resembles that found in vitro with chymotrypsin-like>caspase-like>trypsin-like activities. Since inhibition of the proteasome system might affect fundamental basic cellular processes but on the other side might also prevent the degradation of a proteinacous cargo, we suggest that this proteasome inhibitory activity should be taken into account when oligo-arginines are being considered for use as vectors for the intracellular delivery of pharmaceuticals.


Assuntos
Química Farmacêutica/métodos , Oligopeptídeos/química , Inibidores de Proteassoma , Animais , Portadores de Fármacos , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Células HeLa , Humanos , Músculo Esquelético/efeitos dos fármacos , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Ratos , Tecnologia Farmacêutica/métodos , Ubiquitina/química
8.
J Bone Miner Res ; 24(4): 632-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19049332

RESUMO

Mutations affecting the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1/p62) are commonly found in Paget's disease of bone (PDB) and impair SQSTM1's ability to bind ubiquitin, resulting in dysregulated NF-kappaB signaling. In contrast, non-UBA domain mutations are rarer, and little is known about how they manifest their effects. We present the first characterization at the molecular, cellular, and functional level of a non-UBA domain missense mutation (A381V) of SQSTM1. Direct sequencing of exon 7 of the SQSTM1 gene in an Italian PDB patient detected a heterozygous C to T transversion at position 1182, resulting in an alanine to valine substitution at codon 381. Pull-down assays showed the non-UBA region of SQSTM1 that contains A381 is important in mediating ubiquitin-binding affinity and that the A381V mutation exerts weak negative effects on ubiquitin binding. Structural and binding analyses of longer UBA constructs containing A381, using NMR spectroscopy and circular dichroism, showed this region of the protein to be largely unstructured and confirmed its contribution to increased ubiquitin-binding affinity. Co-transfections of U20S cells showed that the A381V mutant SQSTM1 co-localized with ubiquitin with a cellular phenotype indistinguishable from wildtype. Finally, effects of the wildtype and mutant SQSTM1 on NF-kappaB signaling were assessed in HEK293 cells co-transfected with an NF-kappaB luciferase reporter construct. A381V mutant SQSTM1 produced a level of activation of NF-kappaB signaling greater than wildtype and similar to that of UBA domain mutants, indicating that non-UBA and UBA domain mutations may exert their effects through a common mechanism involving dysregulated NF-kappaB signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação de Sentido Incorreto/genética , Osteíte Deformante/genética , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Linhagem Celular , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Sequestossoma-1 , Transdução de Sinais , Transfecção , Ubiquitina/metabolismo
9.
Proc Natl Acad Sci U S A ; 105(51): 20197-202, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19091944

RESUMO

Modification of proteins by the addition of lysine (K)-63-linked polyubiquitin (polyUb) chains is suggested to play important roles in a variety of cellular events, including DNA repair, signal transduction, and receptor endocytosis. However, identifying such modifications in living cells is complex and cumbersome. We have generated a monoclonal antibody (mAb) that specifically recognizes K63-linked polyUb, but not any other isopeptide-linked (K6, K11, K27, K29, K33, or K48) polyUb or monoubiquitin. We demonstrate the sensitivity and specificity of this K63Ub-specific mAb to detect K63Ub-modified proteins in cell lysates by Western blotting and in cells by immunofluorescence, and K63Ub-modified TRAF6 and MEKK1 in vitro and ex vivo. This unique mAb will facilitate the analysis of K63-linked polyubiquitylation ex vivo and presents a strategy for the generation of similar reagents against other forms of polyUb.


Assuntos
Anticorpos Monoclonais , Lisina , Poliubiquitina/análise , Poliubiquitina/imunologia , Ubiquitinação , Especificidade de Anticorpos , Técnicas de Laboratório Clínico , Poliubiquitina/isolamento & purificação , Processamento de Proteína Pós-Traducional
10.
J Neurosci ; 28(33): 8189-98, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18701681

RESUMO

Ubiquitin-positive intraneuronal inclusions are a consistent feature of the major human neurodegenerative diseases, suggesting that dysfunction of the ubiquitin proteasome system is central to disease etiology. Research using inhibitors of the 20S proteasome to model Parkinson's disease is controversial. We report for the first time that specifically 26S proteasomal dysfunction is sufficient to trigger neurodegenerative disease. Here, we describe novel conditional genetic mouse models using the Cre/loxP system to spatially restrict inactivation of Psmc1 (Rpt2/S4) to neurons of either the substantia nigra or forebrain (e.g., cortex, hippocampus, and striatum). PSMC1 is an essential subunit of the 26S proteasome and Psmc1 conditional knock-out mice display 26S proteasome depletion in targeted neurons, in which the 20S proteasome is not affected. Impairment of specifically ubiquitin-mediated protein degradation caused intraneuronal Lewy-like inclusions and extensive neurodegeneration in the nigrostriatal pathway and forebrain regions. Ubiquitin and alpha-synuclein neuropathology was evident, similar to human Lewy bodies, but interestingly, inclusion bodies contained mitochondria. We support this observation by demonstrating mitochondria in an early form of Lewy body (pale body) from Parkinson's disease patients. The results directly confirm that 26S dysfunction in neurons is involved in the pathology of neurodegenerative disease. The model demonstrates that 26S proteasomes are necessary for normal neuronal homeostasis and that 20S proteasome activity is insufficient for neuronal survival. Finally, we are providing the first reproducible genetic platform for identifying new therapeutic targets to slow or prevent neurodegeneration.


Assuntos
Encéfalo/enzimologia , Corpos de Inclusão/enzimologia , Corpos de Lewy/enzimologia , Degeneração Neural/enzimologia , Degeneração Neural/genética , Neurônios/enzimologia , Complexo de Endopeptidases do Proteassoma/deficiência , Animais , Encéfalo/patologia , Feminino , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Corpos de Lewy/genética , Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/patologia , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/fisiologia
11.
J Biol Chem ; 283(26): 18177-86, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18467332

RESUMO

The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains derived from the p85alpha subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma1, and the N-terminal (but not the C-terminal) SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation that may be disrupted in the tauopathies including Alzheimer disease.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Quinases da Família src/metabolismo , Proteínas tau/química , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Humanos , Conformação Molecular , Dados de Sequência Molecular , Peptídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Domínios de Homologia de src
12.
Proteomics ; 8(6): 1221-36, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18283660

RESUMO

Accumulation of proteins in inclusions in neurological disorders is partly due to dysfunction of the ubiquitin-proteasome system. Proteasomal dysfunction may be caused by misexpression of one or more of its subunits. A large number of antibodies reactive with proteasome subunits were screened on material from patients exhibiting tau- and synucleinopathies. Many antisera against proteasomal subunits (11S activator, 19S regulator ATPase/non-ATPase, and 20S alpha and beta resulted in a distinct nuclear and/or cytoplasmic staining of the entorhinal-hippocampal area and the temporal cortex of Alzheimer's disease (AD) patients. In particular an antibody directed against 19S regulator ATPase subunit 6b (S6b) specifically stained the neurofibrillary tangles and dystrophic neurites in AD, Down syndrome and aged nondemented controls. In other tauopathies (Pick's disease, frontotemporal dementia, progressive supranuclear palsy and argyrophilic grain disease), neuronal and/or glial inclusions were also S6b immunoreactive. In contrast, in synucleinopathies (Lewy body disease (LBD) and multiple system atrophy) no S6b staining was seen. Real time quantitative PCR on the temporal cortex of AD patients revealed a significant increase in S6b subunit mRNA. This increase was not found in the gyrus cinguli anterior of patients with LBD. This differential expression of S6b most likely will result in different proteomic patterns. Here we present evidence to show that S6b coexists with a reporter for proteasomal dysfunction (ubiquitin(+1)), and we conclude that S6b transcript up-regulation and the dysfunction in tauopathies may be functionally related.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Sinucleínas/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Anticorpos/imunologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Modelos Biológicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Doença de Pick/metabolismo , Doença de Pick/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tauopatias/patologia , Lobo Temporal/metabolismo , Lobo Temporal/patologia
13.
J Biol Chem ; 283(9): 5427-40, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18083707

RESUMO

The p62 protein functions as a scaffold in signaling pathways that lead to activation of NF-kappaB and is an important regulator of osteoclastogenesis. Mutations affecting the receptor activator of NF-kappaB signaling axis can result in human skeletal disorders, including those identified in the C-terminal ubiquitin-associated (UBA) domain of p62 in patients with Paget disease of bone. These observations suggest that the disease may involve a common mechanism related to alterations in the ubiquitin-binding properties of p62. The structural basis for ubiquitin recognition by the UBA domain of p62 has been investigated using NMR and reveals a novel binding mechanism involving a slow exchange structural reorganization of the UBA domain to a "bound" non-canonical UBA conformation that is not significantly populated in the absence of ubiquitin. The repacking of the three-helix bundle generates a binding surface localized around the conserved Xaa-Gly-Phe-Xaa loop that appears to optimize both hydrophobic and electrostatic surface complementarity with ubiquitin. NMR titration analysis shows that the p62-UBA binds to Lys 48-linked di-ubiquitin with approximately 4-fold lower affinity than to mono-ubiquitin, suggesting preferential binding of the p62-UBA to single ubiquitin units, consistent with the apparent in vivo preference of the p62 protein for Lys 63-linked polyubiquitin chains (which adopt a more open and extended structure). The conformational switch observed on binding may represent a novel mechanism that underlies specificity in regulating signalinduced protein recognition events.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Ubiquitina/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Ressonância Magnética Nuclear Biomolecular , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Ligação Proteica/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae , Proteína Sequestossoma-1 , Transdução de Sinais/genética , Relação Estrutura-Atividade , Ubiquitina/genética , Ubiquitina/metabolismo
14.
J Bone Miner Res ; 20(4): 619-24, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15765181

RESUMO

UNLABELLED: We have studied the effects of various PDB-causing mutations of SQSTM1 on the in vitro ubiquitin-binding properties of the p62 protein. All mutations caused loss of monoubiquitin-binding and impaired K48-linked polyubiquitin-binding, which was only evident at physiological temperature. This suggests that SQSTM1 mutations predispose to PDB through a common mechanism that depends on loss of ubiquitin-binding by p62. INTRODUCTION: Mutations in the SQSTM1 gene, which affect the ubiquitin-associated (UBA) domain of the p62 protein, are a common cause of Paget's disease of bone (PDB). We previously showed that the isolated UBA domain of p62 binds K48-linked polyubiquitin chains in vitro and that PDB-causing mutations in the UBA domain can be resolved in to those which retain (P392L and G411S) or lose (M404V and G425R) the ability to bind K48-linked polyubiquitin. To further clarify the mechanisms by which these mutations predispose to PDB, we have extended these analyses to study the ubiquitin-binding properties of the PDB-causing mutations in the context of the full-length p62 protein. MATERIALS AND METHODS: We studied the effects of various PDB-causing mutations on the interaction between glutathione S-transferase (GST)-tagged p62 proteins and monoubiquitin, as well as K48-linked polyubiquitin chains, using in vitro ubiquitin-binding assays. RESULTS: All of the PDB-causing mutations assessed (P392L, E396X, M404V, G411S, and G425R) caused loss of monoubiquitin binding and impaired K48-linked polyubiquitin-binding when introduced into the full-length p62 protein. However, these effects were only observed when the binding experiments were conducted at physiological temperature (37 degrees C); they were not seen at room temperature or at 4 degrees C. CONCLUSIONS: Our in vitro findings suggest that PDB-causing mutations of SQSTM1 could predispose to disease through a common mechanism that is dependent on impaired binding of p62 to a ubiquitylated target and show that 5q35-linked PDB is the first example of a human disorder caused by loss of function mutations in a UBA domain.


Assuntos
Osteíte Deformante/genética , Proteínas/genética , Proteínas/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Osteíte Deformante/metabolismo , Mutação Puntual , Estrutura Secundária de Proteína , Proteína Sequestossoma-1
15.
J Bone Miner Res ; 19(7): 1122-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15176995

RESUMO

UNLABELLED: Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides. INTRODUCTION: Mutations affecting the ubiquitin-associated (UBA) domain of Sequestosome 1 (SQSTM1) gene have recently been identified as a common cause of familial Paget's disease of bone (PDB), but the mechanisms responsible are unclear. We identified three novel SQSTM1 mutations in PDB, conducted functional and structural analyses of all PDB-causing mutations, and studied the relationship between genotype and phenotype. MATERIALS AND METHODS: Mutation screening of the SQSTM1 gene was conducted in 70 kindreds with familial PDB. We characterized the effect of the mutations on structure of the UBA domain by protein NMR, studied the effects of the mutant UBA domains on ubiquitin binding, and looked at genotype-phenotype correlations. RESULTS AND CONCLUSIONS: Three novel missense mutations affecting the SQSTM1 UBA domain were identified, including a missense mutation at codon 411 (G411S), a missense mutation at codon 404 (M404V), and a missense mutation at codon 425 (G425R). We also identified a deletion leading to a premature stop codon at 394 (L394X). None of the mutations were found in controls. Structural analysis showed that M404V and G425R involved residues on the hydrophobic surface patch implicated in ubiquitin binding, and consistent with this, the G425R and M404V mutants abolished the ability of mutant UBA domains to bind polyubiquitin chains. In contrast, the G411S and P392L mutants bound polyubiquitin chains normally. Genotype-phenotype analysis showed that patients with truncating mutations had more extensive PDB than those with missense mutations (bones involved = 6.05 +/- 2.71 versus 3.45 +/- 2.46; p < 0.0001). This work confirms the importance of UBA domain mutations of SQSTM1 as a cause of PDB but shows that there is no correlation between the ubiquitin-binding properties of the different mutant UBA domains and disease occurrence or extent. This indicates that the mechanism of action most probably involves an interaction between SQSTM1 and a hitherto unidentified protein that modulates bone turnover.


Assuntos
Testes Genéticos , Mutação de Sentido Incorreto/genética , Osteíte Deformante/genética , Proteínas/genética , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Ressonância Magnética Nuclear Biomolecular , Osteíte Deformante/diagnóstico , Fenótipo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Proteína Sequestossoma-1
16.
J Biol Chem ; 278(39): 37409-12, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12857745

RESUMO

The p62 protein (also known as SQSTM1) mediates diverse cellular functions including control of NFkappaB signaling and transcriptional activation. p62 binds non-covalently to ubiquitin and co-localizes with ubiquitylated inclusions in a number of human protein aggregation diseases. Mutations in the gene encoding p62 cause Paget's disease of bone (PDB), a common disorder of the elderly characterized by excessive bone resorption and formation. All of the p62 PDB mutations identified to date cluster within the C-terminal region of the protein, which shows low sequence identity to previously characterized ubiquitin-associated (UBA) domains. We report the first NMR structure of a recombinant polypeptide that contains the C-terminal UBA domain of the human p62 protein (residues 387-436). This sequence, which confers multiubiquitin chain binding, forms a compact three-helix bundle with a structure analogous to the UBA domains of HHR23A but with differences in the loop regions connecting helices that may be involved in binding accessory proteins. We show that the Pro392 --> Leu PDB substitution mutation modifies the structure of the UBA domain by extending the N terminus of helix 1. In contrast to the p62 PDB deletion mutations that remove the UBA domain and ablate multiubiquitin chain binding, the Pro392 --> Leu substitution does not affect interaction of the UBA domain with multiubiquitin chains. Thus, phenotypically identical substitution and deletion mutations do not appear to predispose to PDB through a mechanism dependent on a common loss of ubiquitin chain binding by p62.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Mutação , Osteíte Deformante/genética , Proteínas , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteína Sequestossoma-1
17.
Biochem Biophys Res Commun ; 300(3): 694-8, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12507505

RESUMO

Activity of the STE20-related kinase hMINK was investigated. hMINK was expressed widely, though not ubiquitously, in human tissues; highest levels being found in haematopoietic tissues but also in brain, placenta, and lung. Mutagenesis revealed that T(191) and Y(193) in the substrate recognition loop of the catalytic domain were critical for kinase activity against exogenous substrates and autophosphorylation. A mutation on T(187) showed reduced enzymatic activity against exogenous substrates but retained autophosphorylation activity. Phosphorylation was confirmed by the use of a phospho-specific T(187) antibody. hMINK activated the JNK signal transduction pathway and optimal JNK activation occurred when the C-terminus was deleted. In addition, overexpression of the C-terminal domain devoid of kinase activity also resulted in significant activation of the JNK pathway. These data suggest that hMINK requires an activation step that dissociates the C terminal, thereby freeing the catalytic domain to interact with substrates. Models for receptor-mediated activation of hMINK are discussed.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/química , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Especificidade de Anticorpos , Linhagem Celular , Clonagem Molecular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Rim/citologia , Rim/metabolismo , MAP Quinase Quinase Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Especificidade de Órgãos , Fosforilação , Canais de Potássio/genética , Estrutura Terciária de Proteína/fisiologia , Relação Estrutura-Atividade
18.
J Neurosci ; 22(1): 10-20, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11756483

RESUMO

The increased production of amyloid beta-peptide (Abeta) in Alzheimer's disease is acknowledged to be a key pathogenic event. In this study, we examined the response of primary human and rat brain cortical cultures to Abeta administration and found a marked increase in the tyrosine phosphorylation content of numerous neuronal proteins, including tau and putative microtubule-associated protein 2c (MAP2c). We also found that paired helical filaments of aggregated and hyperphosphorylated tau are tyrosine phosphorylated, indicating that changes in the phosphotyrosine content of cytoplasmic proteins in response to Abeta are potentially an important process. Increased tyrosine phosphorylation of cytoskeletal and other neuronal proteins was specific to fibrillar Abeta(25-35) and Abeta(1-42). The tyrosine phosphorylation was blocked by addition of the Src family tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-d)pyramide (PP2) and the phosphatidylinositol 3-kinase inhibitor LY 294002. Tyrosine phosphorylation of tau and MAP2c was concomitant with an increase in the tyrosine phosphorylation and subsequent putative activation of the non-receptor kinase, focal adhesion kinase (FAK). Immunoprecipitation of Fyn, a member of the Src family, from Abeta(25-35)-treated neurons showed an increased association of Fyn with FAK. Abeta treatment of cells also stimulated the sustained activation of extracellular regulated kinase-2, which was blocked by addition of PP2 and LY 294002, suggesting that FAK/Fyn/PI3-kinase association is upstream of mitogen-activated protein (MAP) kinase signaling in Abeta-treated neurons. This cascade of signaling events contains the earliest biochemical changes in neurons to be described in response to Abeta exposure and may be critical for subsequent neurodegenerative changes.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Proteínas tau/metabolismo , Animais , Caspases/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-fyn , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tirosina/metabolismo , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...