Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(7): e26684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703090

RESUMO

Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high-density diffuse optical tomography (HD-DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD-DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations.


Assuntos
Mapeamento Encefálico , Encéfalo , Tomografia Óptica , Humanos , Tomografia Óptica/métodos , Feminino , Criança , Masculino , Pré-Escolar , Mapeamento Encefálico/métodos , Lactente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Filmes Cinematográficos , Adulto Jovem
2.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986896

RESUMO

Traditional laboratory tasks offer tight experimental control but lack the richness of our everyday human experience. As a result many cognitive neuroscientists have been motivated to adopt experimental paradigms that are more natural, such as stories and movies. Here we describe data collected from 58 healthy adult participants (aged 18-76 years) who viewed 10 minutes of a movie (The Good, the Bad, and the Ugly, 1966). Most (36) participants viewed the clip more than once, resulting in 106 sessions of data. Cortical responses were mapped using high-density diffuse optical tomography (first- through fourth nearest neighbor separations of 1.3, 3.0, 3.9, and 4.7 cm), covering large portions of superficial occipital, temporal, parietal, and frontal lobes. Consistency of measured activity across subjects was quantified using intersubject correlation analysis. Data are provided in both channel format (SNIRF) and projected to standard space (NIfTI), using an atlas-based light model. These data are suitable for methods exploration as well as investigating a wide variety of cognitive phenomena.

3.
Neuroimage ; 276: 120190, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245559

RESUMO

Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited. While HD-DOT has been previously validated against fMRI for mapping the neural correlates underlying language comprehension and covert (i.e., "silent") language production, HD-DOT has not yet been established for mapping the cortical responses to overt (i.e., "out loud") language production. In this study, we assessed the brain regions supporting a simple hierarchy of language tasks: silent reading of single words, covert production of verbs, and overt production of verbs in normal hearing right-handed native English speakers (n = 33). First, we found that HD-DOT brain mapping is resilient to movement associated with overt speaking. Second, we observed that HD-DOT is sensitive to key activations and deactivations in brain function underlying the perception and naturalistic production of language. Specifically, statistically significant results were observed that show recruitment of regions in occipital, temporal, motor, and prefrontal cortices across all three tasks after performing stringent cluster-extent based thresholding. Our findings lay the foundation for future HD-DOT studies of imaging naturalistic language comprehension and production during real-life social interactions and for broader applications such as presurgical language assessment and brain-machine interfaces.


Assuntos
Encéfalo , Tomografia Óptica , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Compreensão , Tomografia Óptica/métodos , Idioma
4.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666138

RESUMO

Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.


Assuntos
Implantes Cocleares , Percepção da Fala , Estimulação Acústica/métodos , Adulto , Percepção Auditiva/fisiologia , Humanos , Memória de Curto Prazo , Córtex Pré-Frontal/diagnóstico por imagem
5.
Neuroimage ; 226: 117516, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137479

RESUMO

BACKGROUND: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image quality. Despite the resulting promise of HD-DOT for facilitating field applications of neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated. OBJECTIVE: To assess the feasibility and performance of decoding with HD-DOT in visual cortex. METHODS AND RESULTS: To establish the feasibility of decoding at the single-trial level with HD-DOT, a template matching strategy was used to decode visual stimulus position. A receiver operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of decoding across 5 participants established both reproducibility in multiple individuals and the feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based significance testing. CONCLUSIONS: Visual stimulus information can be decoded accurately, reproducibly, and across a range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing to block-average test data) using HD-DOT data. These results lay the foundation for future studies of more complex decoding with HD-DOT and applications in clinical populations.


Assuntos
Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Óptica/métodos , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Hum Brain Mapp ; 41(14): 4093-4112, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648643

RESUMO

Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/normas , Movimentos da Cabeça , Processamento de Imagem Assistida por Computador/normas , Tomografia Óptica/normas , Acelerometria , Adulto , Idoso , Artefatos , Conectoma/normas , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho/normas , Adulto Jovem
7.
Neuroimage ; 215: 116541, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31987995

RESUMO

Behavioral and cognitive tests in individuals who were malnourished as children have revealed malnutrition-related deficits that persist throughout the lifespan. These findings have motivated recent neuroimaging investigations that use highly portable functional near-infrared spectroscopy (fNIRS) instruments to meet the demands of brain imaging experiments in low-resource environments and enable longitudinal investigations of brain function in the context of long-term malnutrition. However, recent studies in healthy subjects have demonstrated that high-density diffuse optical tomography (HD-DOT) can significantly improve image quality over that obtained with sparse fNIRS imaging arrays. In studies of both task activations and resting state functional connectivity, HD-DOT is beginning to approach the data quality of fMRI for superficial cortical regions. In this work, we developed a customized HD-DOT system for use in malnutrition studies in Cali, Colombia. Our results evaluate the performance of the HD-DOT instrument for assessing brain function in a cohort of malnourished children. In addition to demonstrating portability and wearability, we show the HD-DOT instrument's sensitivity to distributed brain responses using a sensory processing task and measurements of homotopic functional connectivity. Task-evoked responses to the passive word listening task produce activations localized to bilateral superior temporal gyrus, replicating previously published work using this paradigm. Evaluating this localization performance across sparse and dense reconstruction schemes indicates that greater localization consistency is associated with a dense array of overlapping optical measurements. These results provide a foundation for additional avenues of investigation, including identifying and characterizing a child's individual malnutrition burden and eventually contributing to intervention development.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos da Nutrição Infantil/diagnóstico por imagem , Neuroimagem/instrumentação , Neuroimagem/métodos , Tomografia Óptica/instrumentação , Tomografia Óptica/métodos , Encéfalo/fisiopatologia , Criança , Transtornos da Nutrição Infantil/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...