Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38339785

RESUMO

The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.

2.
Neurochem Int ; 174: 105678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266657

RESUMO

Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1ß, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.


Assuntos
Disfunção Cognitiva , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Isolamento Social , Comportamento Social , Citocinas/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo
4.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566656

RESUMO

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Camundongos , Animais , Mecanotransdução Celular/fisiologia , Engenharia Tecidual/métodos , Morfogênese , Diferenciação Celular , Matriz Extracelular
5.
Front Aging Neurosci ; 15: 1212212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547743

RESUMO

Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APPNL-G-F mouse model. Several hippocampal regions in APPNL-G-F mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.

6.
Adv Sci (Weinh) ; 10(16): e2206554, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051804

RESUMO

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.


Assuntos
Neoplasias , Migração Transendotelial e Transepitelial , Células Endoteliais , Endotélio , Actinas , Fenômenos Mecânicos
7.
iScience ; 24(12): 103482, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927026

RESUMO

Cells maintain their volume through fine intracellular osmolarity regulation. Osmotic challenges drive fluid into or out of cells causing swelling or shrinkage, respectively. The dynamics of cell volume changes depending on the rheology of the cellular constituents and on how fast the fluid permeates through the membrane and cytoplasm. We investigated whether and how poroelasticity can describe volume dynamics in response to osmotic shocks. We exposed cells to osmotic perturbations and used defocusing epifluorescence microscopy on membrane-attached fluorescent nanospheres to track volume dynamics with high spatiotemporal resolution. We found that a poroelastic model that considers both geometrical and pressurization rates captures fluid-cytoskeleton interactions, which are rate-limiting factors in controlling volume changes at short timescales. Linking cellular responses to osmotic shocks and cell mechanics through poroelasticity can predict the cell state in health, disease, or in response to novel therapeutics.

8.
Br J Pharmacol ; 178(19): 3977-3996, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029379

RESUMO

People that develop extracranial cancers often display co-morbid neurological disorders, such as anxiety, depression and cognitive impairment, even before commencement of chemotherapy. This suggests bidirectional crosstalk between non-CNS tumours and the brain, which can regulate peripheral tumour growth. However, the reciprocal neurological effects of tumour progression on brain homeostasis are not well understood. Here, we review brain regions involved in regulating peripheral tumour development and how they, in turn, are adversely affected by advancing tumour burden. Tumour-induced activation of the immune system, blood-brain barrier breakdown and chronic neuroinflammation can lead to circadian rhythm dysfunction, sleep disturbances, aberrant glucocorticoid production, decreased hippocampal neurogenesis and dysregulation of neural network activity, resulting in depression and memory impairments. Given that cancer-related cognitive impairment diminishes patient quality of life, reduces adherence to chemotherapy and worsens cancer prognosis, it is essential that more research is focused at understanding how peripheral tumours affect brain homeostasis.


Assuntos
Neoplasias , Qualidade de Vida , Encéfalo , Cognição , Humanos , Transtornos do Humor , Neoplasias/complicações , Neoplasias/tratamento farmacológico
9.
FEBS Lett ; 595(10): 1391-1410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33728650

RESUMO

Neurons and glial cells of the central nervous system (CNS) release extracellular vesicles (EVs) to the interstitial fluid of the brain and spinal cord parenchyma. EVs contain proteins, nucleic acids and lipids that can be taken up by, and modulate the behaviour of, neighbouring recipient cells. The functions of EVs have been extensively studied in the context of neurodegenerative diseases. However, mechanisms involved in EV-mediated neuron-glial communication under physiological conditions or healthy ageing remain unclear. A better understanding of the myriad roles of EVs in CNS homeostasis is essential for the development of novel therapeutics to alleviate and reverse neurological disturbances of ageing. Proteomic studies are beginning to reveal cell type-specific EV cargo signatures that may one day allow us to target specific neuronal or glial cell populations in the treatment of debilitating neurological disorders. This review aims to synthesise the current literature regarding EV-mediated cell-cell communication in the brain, predominantly under physiological conditions.


Assuntos
Comunicação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/genética , Humanos , MicroRNAs , Microglia/citologia , Microglia/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo
10.
Eur J Neurosci ; 53(12): 3851-3878, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32356339

RESUMO

Just as the epigenome, the proteome and the electrophysiological properties of a cell influence its function, so too do its intrinsic mechanical properties and its extrinsic mechanical environment. This is especially true for neurons of the central nervous system (CNS) as long-term maintenance of synaptic connections relies on efficient axonal transport machinery and structural stability of the cytoskeleton. Recent reports suggest that profound physical changes occur in the CNS microenvironment with advancing age which, in turn, will impact highly mechanoresponsive neurons and glial cells. Here, we discuss the complex and inhomogeneous mechanical structure of CNS tissue, as revealed by recent mechanical measurements on the brain and spinal cord, using techniques such as magnetic resonance elastography and atomic force microscopy. Moreover, ageing, traumatic brain injury, demyelination and neurodegeneration can perturb the mechanical properties of brain tissue and trigger mechanobiological signalling pathways in neurons, glia and cerebral vasculature. It is, therefore, very likely that significant changes in cell and tissue mechanics contribute to age-related cognitive decline and deficits in memory formation which are accelerated and magnified in neurodegenerative states, such as Alzheimer's disease. Importantly, we are now beginning to understand how neuronal and glial cell mechanics and brain tissue mechanobiology are intimately linked with neurophysiology and cognition.


Assuntos
Doença de Alzheimer , Envelhecimento , Biofísica , Encéfalo , Humanos , Neurônios
11.
FEBS Open Bio ; 11(1): 146-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185010

RESUMO

In the brain, REST (Repressor Element-1 Silencing Transcription factor) is a key regulator of neuron cell-specific gene expression. Nuclear translocation of neuronal REST has been shown to be neuroprotective in a healthy ageing context. In contrast, inability to upregulate nuclear REST is thought to leave ageing neurons vulnerable to neurodegenerative stimuli, such as Alzheimer's disease (AD) pathology. Hippocampal and cortical neurons are known to be particularly susceptible to AD-associated neurodegeneration. However, REST expression has not been extensively characterised in the healthy ageing brain. Here, we examined the spatiotemporal immunolocalisation of REST in the brains of healthy ageing wild-type Fischer-344 and transgenic Alzheimer's disease rats (TgF344-AD). Nuclear expression of REST increased from 6 months to 18 months of age in the hippocampus, frontal cortex and subiculum of wild-type rats, but not in TgF344-AD rats. No changes in REST were measured in more posterior cortical regions or in the thalamus. Interestingly, levels of the presynaptic marker synaptophysin, a known gene target of REST, were lower in CA1 hippocampal neurons of 18-month TgF344-AD rats compared to 18-month wild-types, suggesting that elevated nuclear REST may protect against synapse loss in the CA1 of 18-month wild-type rats. High REST expression in ageing wild-type rats did not, however, protect against axonal loss nor against astroglial reactivity in the hippocampus. Taken together, our data confirm that changes in nuclear REST expression are context-, age- and brain region-specific. Moreover, key brain structures involved in learning and memory display elevated REST expression in healthy ageing wild-type rats but not TgF344-AD rats.


Assuntos
Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Lobo Frontal/patologia , Envelhecimento Saudável/patologia , Proteínas Repressoras/análise , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Envelhecimento Saudável/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Mutação , Neurônios , Presenilina-1/genética , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Proteínas Repressoras/metabolismo , Análise Espaço-Temporal , Sinaptofisina/análise , Sinaptofisina/metabolismo
12.
Glia ; 68(2): 356-375, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596529

RESUMO

Piezo1 is a mechanosensitive ion channel that facilitates the translation of extracellular mechanical cues to intracellular molecular signaling cascades through a process termed, mechanotransduction. In the central nervous system (CNS), mechanically gated ion channels are important regulators of neurodevelopmental processes such as axon guidance, neural stem cell differentiation, and myelination of axons by oligodendrocytes. Here, we present evidence that pharmacologically mediated overactivation of Piezo1 channels negatively regulates CNS myelination. Moreover, we found that the peptide GsMTx4, an antagonist of mechanosensitive cation channels such as Piezo1, is neuroprotective and prevents chemically induced demyelination. In contrast, the positive modulator of Piezo1 channel opening, Yoda-1, induces demyelination and neuronal damage. Using an ex vivo murine-derived organotypic cerebellar slice culture model, we demonstrate that GsMTx4 attenuates demyelination induced by the cytotoxic lipid, psychosine. Importantly, we confirmed the potential therapeutic effects of GsMTx4 peptide in vivo by co-administering it with lysophosphatidylcholine (LPC), via stereotactic injection, into the cerebral cortex of adult mice. GsMTx4 prevented both demyelination and neuronal damage usually caused by the intracortical injection of LPC in vivo; a well-characterized model of focal demyelination. GsMTx4 also attenuated both LPC-induced astrocyte toxicity and microglial reactivity within the lesion core. Overall, our data suggest that pharmacological activation of Piezo1 channels induces demyelination and that inhibition of mechanosensitive channels, using GsMTx4, may alleviate the secondary progressive neurodegeneration often present in the latter stages of demyelinating diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Canais Iônicos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos
13.
Glia ; 68(1): 145-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433095

RESUMO

Astrocytes are important for information processing in the brain and they achieve this by fine-tuning neuronal communication via continuous uptake and release of biochemical modulators of neurotransmission and synaptic plasticity. Often overlooked are their important functions in mechanosensation. Indeed, astrocytes can detect pathophysiological changes in the mechanical properties of injured, ageing, or degenerating brain tissue. We have recently shown that astrocytes surrounding mechanically-stiff amyloid plaques upregulate the mechanosensitive ion channel, Piezo1. Moreover, ageing transgenic Alzheimer's rats harboring a chronic peripheral bacterial infection displayed enhanced Piezo1 expression in amyloid plaque-reactive astrocytes of the hippocampus and cerebral cortex. Here, we have shown that the bacterial endotoxin, lipopolysaccharide (LPS), also upregulates Piezo1 in primary mouse cortical astrocyte cultures in vitro. Activation of Piezo1, via the small molecule agonist Yoda1, enhanced Ca2+ influx in both control and LPS-stimulated astrocytes. Moreover, Yoda1 augmented intracellular Ca2+ oscillations but decreased subsequent Ca2+ influx in response to adenosine triphosphate (ATP) stimulation. Neither blocking nor activating Piezo1 affected cell viability. However, LPS-stimulated astrocyte cultures exposed to the Piezo1 activator, Yoda1, migrated significantly slower than reactive astrocytes treated with the mechanosensitive channel-blocking peptide, GsMTx4. Furthermore, our data show that activating Piezo1 channels inhibits the release of cytokines and chemokines, such as IL-1ß, TNFα, and fractalkine (CX3 CL1), from LPS-stimulated astrocyte cultures. Taken together, our results suggest that astrocytic Piezo1 upregulation may act to dampen neuroinflammation and could be a useful drug target for neuroinflammatory disorders of the brain.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Citocinas/metabolismo , Canais Iônicos/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Acta Biomater ; 102: 138-148, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715334

RESUMO

To characterize a poroelastic material, typically an indenter is pressed onto the surface of the material with a ramp of a finite approach velocity followed by a hold where the indenter displacement is kept constant. This leads to deformation of the porous matrix, pressurization of the interstitial fluid and relaxation due to redistribution of fluid through the pores. In most studies the poroelastic properties, including elastic modulus, Poisson ratio and poroelastic diffusion coefficient, are extracted by assuming an instantaneous step indentation. However, exerting step like indentation is not experimentally possible and usually a ramp indentation with a finite approach velocity is applied. Moreover, the poroelastic relaxation time highly depends on the approach velocity in addition to the poroelastic diffusion coefficient and the contact area. Here, we extensively studied the effect of indentation velocity using finite element simulations which has enabled the formulation of a new framework based on a master curve that incorporates the finite rise time. To verify our novel framework, the poroelastic properties of two types of hydrogels were extracted experimentally using indentation tests at both macro and micro scales. Our new framework that is based on consideration of finite approach velocity is experimentally easy to implement and provides a more accurate estimation of poroelastic properties. STATEMENT OF SIGNIFICANCE: Hydrogels, tissues and living cells are constituted of a sponge-like porous elastic matrix bathed in an interstitial fluid. It has been shown that these materials behave according to the theory of 'poroelasticity' when mechanically stimulated in a way similar to that experienced in organs within the body. In this theory, the rate at which the fluid-filled sponge can be deformed is limited by how fast interstitial fluid can redistribute within the sponge in response to deformation. Here, we simulated indentation experiments at different rates and formulated a new framework that inherently captures the effects of stimulation speed on the mechanical response of poroelastic materials. We validated our framework by conducting experiments at different length-scales on agarose and polyacrylamide hydrogels.


Assuntos
Hidrogéis/química , Resinas Acrílicas/química , Módulo de Elasticidade , Análise de Elementos Finitos , Teste de Materiais , Porosidade , Sefarose/química
15.
Nano Lett ; 19(7): 4427-4434, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199151

RESUMO

Quantification of mechanical forces is a major challenge across biomedical sciences. Yet such measurements are essential to understanding the role of biomechanics in cell regulation and function. Traction force microscopy remains the most broadly applied force probing technology but typically restricts itself to single-plane two-dimensional quantifications with limited spatiotemporal resolution. Here, we introduce an enhanced force measurement technique combining 3D super-resolution fluorescence structural illumination microscopy and traction force microscopy (3D-SIM-TFM) offering increased spatiotemporal resolution, opening-up unprecedented insights into physiological three-dimensional force production in living cells.


Assuntos
Simulação por Computador , Microscopia de Força Atômica , Tração
16.
Front Neuroendocrinol ; 53: 100744, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31004616

RESUMO

The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.


Assuntos
Fatores Etários , Encéfalo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Epigênese Genética/fisiologia , Epigenômica , Humanos
17.
Front Aging Neurosci ; 10: 332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405400

RESUMO

A defining pathophysiological hallmark of Alzheimer's disease (AD) is the amyloid plaque; an extracellular deposit of aggregated fibrillar Aß1-42 peptides. Amyloid plaques are hard, brittle structures scattered throughout the hippocampus and cerebral cortex and are thought to cause hyperphosphorylation of tau, neurofibrillary tangles, and progressive neurodegeneration. Reactive astrocytes and microglia envelop the exterior of amyloid plaques and infiltrate their inner core. Glia are highly mechanosensitive cells and can almost certainly sense the mismatch between the normally soft mechanical environment of the brain and very stiff amyloid plaques via mechanosensing ion channels. Piezo1, a non-selective cation channel, can translate extracellular mechanical forces to intracellular molecular signaling cascades through a process known as mechanotransduction. Here, we utilized an aging transgenic rat model of AD (TgF344-AD) to study expression of mechanosensing Piezo1 ion channels in amyloid plaque-reactive astrocytes. We found that Piezo1 is upregulated with age in the hippocampus and cortex of 18-month old wild-type rats. However, more striking increases in Piezo1 were measured in the hippocampus of TgF344-AD rats compared to age-matched wild-type controls. Interestingly, repeated urinary tract infections with Escherichia coli bacteria, a common comorbidity in elderly people with dementia, caused further elevations in Piezo1 channel expression in the hippocampus and cortex of TgF344-AD rats. Taken together, we report that aging and peripheral infection augment amyloid plaque-induced upregulation of mechanoresponsive ion channels, such as Piezo1, in astrocytes. Further research is required to investigate the role of astrocytic Piezo1 in the Alzheimer's brain, whether modulating channel opening will protect or exacerbate the disease state, and most importantly, if Piezo1 could prove to be a novel drug target for age-related dementia.

18.
J Neurochem ; 144(6): 736-747, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377126

RESUMO

Sphingosine 1-phosphate receptors (S1PR) are G protein-coupled and compose a family with five subtypes, S1P1R-S1P5R. The drug Gilenya® (Novartis, Basel, Switzerland) (Fingolimod; FTY720) targets S1PRs and was the first oral therapy for patients with relapsing-remitting multiple sclerosis (MS). The phosphorylated form of FTY720 (pFTY720) binds S1PRs causing initial agonism, then subsequent receptor internalization and functional antagonism. Internalization of S1P1R attenuates sphingosine 1-phosphate (S1P)-mediated egress of lymphocytes from lymph nodes, limiting aberrant immune function in MS. pFTY720 also exerts direct actions on neurons and glial cells which express S1PRs. In this study, we investigated the regulation of pro-inflammatory chemokine release by S1PRs in enriched astrocytes and microglial cultures. Astrocytes and microglia were stimulated with lipopolysaccharide (LPS) and increases in C-X-C motif chemokine 5 (CXCL5), also known as LIX (lipopolysaccharide-induced CXC chemokine) expression were quantified. Results showed that pFTY720 attenuated LPS-induced CXCL5 (LIX) protein release from astrocytes, as did the S1P1R selective agonist, SEW2871. In addition, pFTY720 blocked messenger ribonucleic acid (mRNA) transcription of the chemokines, (i) CXCL5/LIX, (ii) C-X-C motif chemokine 10 (CXCL10) also known as interferon gamma-induced protein 10 (IP10) and (iii) chemokine (C-C motif) ligand 2 (CCL2) also known as monocyte chemoattractant protein 1 (MCP1). Interestingly, inhibition of sphingosine kinase attenuated LPS-induced increases in mRNA levels of all three chemokines, suggesting that LPS-TLR4 (Toll-like receptor 4) signalling may enhance chemokine expression via S1P-S1PR transactivation. Lastly, these observations were not limited to astrocytes since we also found that pFTY720 attenuated LPS-induced release of CXCL5 from microglia. These data highlight a role for S1PR signalling in regulating the levels of chemokines in glial cells and support the notion that pFTY720 efficacy in multiple sclerosis may involve the direct modulation of astrocytes and microglia.


Assuntos
Astrócitos/metabolismo , Quimiocina CXCL5/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Feminino , Cloridrato de Fingolimode/administração & dosagem , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Lisoesfingolipídeo/agonistas , Transdução de Sinais
19.
Nat Commun ; 8: 14787, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317912

RESUMO

Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.


Assuntos
Sistema Nervoso Central/patologia , Cicatriz/patologia , Regeneração Nervosa , Neuroglia/patologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Cicatriz/metabolismo , Cicatriz/fisiopatologia , Colágeno Tipo IV/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Laminina/metabolismo , Microscopia de Força Atômica , Neocórtex/metabolismo , Neocórtex/patologia , Neocórtex/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Vimentina/metabolismo
20.
Neuropharmacology ; 113(Pt B): 608-617, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27059127

RESUMO

Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.


Assuntos
Analgésicos/farmacologia , Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Humanos , Lisofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...