Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(12): e22039, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793600

RESUMO

OTUB1 is one of the most highly expressed deubiquitinases, counter-regulating the two most abundant ubiquitin chain types. OTUB1 expression is linked to the development and progression of lung cancer and idiopathic pulmonary fibrosis in humans. However, the physiological function of OTUB1 is unknown. Here, we show that constitutive whole-body Otub1 deletion in mice leads to perinatal lethality by asphyxiation. Analysis of (single-cell) RNA sequencing and proteome data demonstrated that OTUB1 is expressed in all lung cell types with a particularly high expression during late-stage lung development (E16.5, E18.5). At E18.5, the lungs of animals with Otub1 deletion presented with increased cell proliferation that decreased saccular air space and prevented inhalation. Flow cytometry-based analysis of E18.5 lung tissue revealed that Otub1 deletion increased proliferation of major lung parenchymal and mesenchymal/other non-hematopoietic cell types. Adult mice with conditional whole-body Otub1 deletion (wbOtub1del/del ) also displayed increased lung cell proliferation in addition to hyperventilation and failure to adapt the respiratory pattern to hypoxia. On the molecular level, Otub1 deletion enhanced mTOR signaling in embryonic and adult lung tissues. Based on these results, we propose that OTUB1 is a negative regulator of mTOR signaling with essential functions for lung cell proliferation, lung development, adult lung tissue homeostasis, and respiratory regulation.


Assuntos
Proliferação de Células , Cisteína Endopeptidases/fisiologia , Homeostase , Hiperventilação/patologia , Pneumopatias/patologia , Insuficiência Respiratória/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Hiperventilação/etiologia , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Respiratória/etiologia , Serina-Treonina Quinases TOR/genética
2.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34431978

RESUMO

Programs defining tissue-resident macrophage identity depend on local environmental cues. For alveolar macrophages (AMs), these signals are provided by immune and nonimmune cells and include GM-CSF (CSF2). However, evidence to functionally link components of this intercellular cross talk remains scarce. We thus developed new transgenic mice to profile pulmonary GM-CSF expression, which we detected in both immune cells, including group 2 innate lymphoid cells and γδ T cells, as well as AT2s. AMs were unaffected by constitutive deletion of hematopoietic Csf2 and basophil depletion. Instead, AT2 lineage-specific constitutive and inducible Csf2 deletion revealed the nonredundant function of AT2-derived GM-CSF in instructing AM fate, establishing the postnatal AM compartment, and maintaining AMs in adult lungs. This AT2-AM relationship begins during embryogenesis, where nascent AT2s timely induce GM-CSF expression to support the proliferation and differentiation of fetal monocytes contemporaneously seeding the tissue, and persists into adulthood, when epithelial GM-CSF remains restricted to AT2s.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Pulmão/citologia , Macrófagos Alveolares/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Citocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Imunidade Inata , Pulmão/embriologia , Macrófagos Alveolares/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
3.
J Neurochem ; 149(4): 499-517, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30040874

RESUMO

Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal-parietal-entorhinal cortices of human amyloid beta precursor protein (ΑßPP) over-expressing mice. We identified a cortex-specific hypo-metabolic signature at symptomatic onset and a cortex-specific hyper-metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑßPPSwe /PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso-phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso-platelet-activating factor (PAF), LPC(O-18:0/0:0), and the PAF, PC(O-22:6/2:0), declined as a result of reduced calcium-dependent cytosolic phospholipase A2 α (cPLA2 α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑßPPSwe /PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age-independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2 α activity progressively increased; overall Lyso-phosphatidylcholines (LPC) and LPC(O) and PC(O-18:1/2:0) levels progressively rose. Enhanced cPLA2 α activity was only detected in transgenic mice; however, age-dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non-transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age-independent and age-dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre-existing Αß pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Fosfatidilcolinas/metabolismo , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...