Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neuropharmacology ; 257: 110047, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889877

RESUMO

Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system. In this report, we provide detailed pharmacokinetic rodent data on ketamine and its main metabolites following an intraperitoneal injection, and second, we explore the pharmacodynamic properties of ketamine in a rodent PD model with respect to the opioid system, using naloxone, a pan-opioid receptor antagonist, in unilateral 6-hydroxydopamine-lesioned male rats, treated with 6 mg/kg levodopa (l-DOPA) to establish a model of l-DOPA-induced dyskinesia (LID). As previously reported, we showed that ketamine (20 mg/kg) is highly efficacious in reducing LID and now report that the magnitude of this effect is resistant to naloxone (3 and 5 mg/kg). The higher naloxone dose of 5 mg/kg, however, led to an extension of the time-course of the LID, indicating that opioid receptor activation, while not a prerequisite for the anti-dyskinetic effects of ketamine, still exerts an acute modulatory effect. In contrast to the mild modulatory effect on LID, we found that naloxone added to the anti-parkinsonian activity of ketamine, further reducing the akinetic phenotype. In conclusion, our data show opioid receptor blockade differentially modulates the acute anti-parkinsonian and anti-dyskinetic actions of ketamine, providing novel mechanistic information to support repurposing ketamine for individuals with LID.

2.
Brain Res ; 1821: 148613, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783263

RESUMO

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA. While nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, it affected the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of l-DOPA in a rat PD model with a moderate striatal 6-hydroxdopamine (6-OHDA) lesion. We tested five escalating doses of l-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg l-DOPA doses. However, after reaching the 72 mg/kg l-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of l-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we observed an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Dopamina , Receptores Opioides kappa , Ratos Sprague-Dawley , Doença de Parkinson/tratamento farmacológico , Corpo Estriado , Oxidopamina/toxicidade , Modelos Animais de Doenças
3.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37577558

RESUMO

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA. Nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, but a change in the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of L-DOPA in a rat PD model with a moderate striatal 6-hydroxydopamine (6-OHDA) lesion. We tested five escalating doses of L-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg L-DOPA doses. However, after dosing with 72 mg/kg L-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of L-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we saw an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.

4.
Tomography ; 7(4): 980-989, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941653

RESUMO

Evaluation of Parkinsonian Syndromes (PS) with Ioflupane iodine-123 dopamine transporter single photon emission computed tomography (DaT-SPECT), in conjunction with history and clinical examination, aids in diagnosis. FDA-approved, semi-quantitative software, DaTQUANTTM (GE Healthcare, Chicago, IL, USA) is available to assist in interpretation. This study aims to evaluate the optimal variables and thresholds of DaTQUANT to yield the optimal diagnostic accuracy. It is a retrospective review with three different patient populations. DaT-SPECT images from all three study groups were evaluated using DaTQUANTTM software, and both single and multi-variable logistic regression were used to model PS status. The optimal models were chosen via accuracy, sensitivity, and specificity, then evaluated on the other study groups. Among single variable models, the posterior putamen yielded the highest accuracy (84% to 95%), while balancing sensitivity and specificity. Multi-variable models did not substantially improve the accuracy. When the optimal single variable models for each group were used to evaluate the remaining two groups, comparable results were achieved. In typical utilization of DaT-SPECT for differentiation between nigrostriatal degenerative disease (NSDD) and non-NSDD, the posterior putamen was the single variable that yielded the highest accuracy across three different patient populations. The posterior putamen's recommended thresholds for DaTQUANT are SBR ≤ 1.0, z-score of ≤-1.8 and percent deviation ≤ -0.34.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Transtornos Parkinsonianos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Transtornos Parkinsonianos/diagnóstico por imagem , Putamen/metabolismo , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos
5.
Neurosci Lett ; 765: 136251, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536508

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characterized by motor dysfunction. While PD symptoms are well treated with L-DOPA, continuous use can cause L-DOPA-induced dyskinesia (LID). We have previously demonstrated that sub-anesthetic ketamine attenuated LID development in rodents, measured by abnormal involuntary movements (AIMs), and reduced the density of maladaptive striatal dendritic mushroom spines. Microglia may play a role by phagocytosing maladaptive neuronal spines. In this exploratory study, we hypothesized that ketamine would prevent AIMs and change microglia ramified morphology - an indicator of a microglia response. Unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats were primed with daily injections of L-DOPA for 14 days, treated on days 0 and 7 for 10-hours with sub-anesthetic ketamine (i.p.), and we replicated that this attenuated LID development. We further extended our prior work by showing that while ketamine treatment did lead to an increase of striatal interleukin-6 in dyskinetic rats, indicating a modulation of an inflammatory response, it did not change microglia number or morphology in the dyskinetic striatum. Yet an increase of CD68 in the SNpc of 6-OHDA-lesioned hemispheres post-ketamine indicates increased microglia phagocytosis suggestive of a lingering microglial response to 6-OHDA injury in the SNpc pointing to possible anti-inflammatory action in the PD model in addition to anti-dyskinetic action. In conclusion, we provide further support for sub-anesthetic ketamine treatment of LID. The mechanisms of action for ketamine, specifically related to inflammation and microglia phagocytic functions, are emerging, and require further examination.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Levodopa/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/patologia , Humanos , Levodopa/efeitos adversos , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Fagocitose/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
6.
Exp Neurol ; 340: 113670, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662379

RESUMO

L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks-long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 h. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine's therapeutic effects are region specific. Our findings also have clinical implications, as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/fisiopatologia , Ritmo Gama/efeitos dos fármacos , Ketamina/uso terapêutico , Levodopa/toxicidade , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antiparkinsonianos/toxicidade , Relação Dose-Resposta a Droga , Ritmo Gama/fisiologia , Ketamina/farmacologia , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374986

RESUMO

In previous work we evaluated an opioid glycopeptide with mixed µ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood-brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus Phyllomedusa). We tested BBI-11008 for BBB-penetration after intraperitoneal (i.p.) injection and evaluated effects in LID rats. BBI-11008 (10 mg/kg) demonstrated good CNS-penetrance as shown by microdialysis and mass spectrometric analysis, with peak concentration levels of 150 pM in the striatum. While BBI-11008 at both 10 and 20 mg/kg produced no effect on levodopa-induced limb, axial and oral (LAO) abnormal involuntary movements (AIMs), it reduced the levodopa-induced locomotor AIMs by 50% after systemic injection. The N-methyl-D-aspartate receptor antagonist MK-801 reduced levodopa-induced LAO AIMs, but worsened PD symptoms in this model. Co-administration of MMP-2200 had been shown prior to block the MK-801-induced pro-Parkinsonian activity. Interestingly, BBI-11008 was not able to block the pro-Parkinsonian effect of MK-801 in the LID model, further indicating that a balance of mu- and delta-opioid agonism is required for this modulation. In summary, this study illustrates another example of meaningful BBB-penetration of a glycopeptide analogue of a peptide to achieve a central behavioral effect, providing additional evidence for the glycosylation technique as a method to harness therapeutic potential of peptides.


Assuntos
Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Glicopeptídeos/farmacologia , Atividade Motora/efeitos dos fármacos , Doença de Parkinson Secundária/fisiopatologia , Receptores Opioides delta/agonistas , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/farmacologia , Animais , Corpo Estriado/metabolismo , Maleato de Dizocilpina/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Glicopeptídeos/administração & dosagem , Glicopeptídeos/farmacocinética , Levodopa , Masculino , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Ratos Sprague-Dawley , Receptores Opioides delta/metabolismo
8.
Exp Neurol ; 333: 113413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717354

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Pharmacotherapy with L-DOPA remains the gold-standard therapy for PD, but is often limited by the development of the common side effect of L-DOPA-induced dyskinesia (LID), which can become debilitating. The only effective treatment for disabling dyskinesia is surgical therapy (neuromodulation or lesioning), therefore effective pharmacological treatment of LID is a critical unmet need. Here, we show that sub-anesthetic doses of ketamine attenuate the development of LID in a rodent model, while also having acute anti-parkinsonian activity. The long-term anti-dyskinetic effect is mediated by brain-derived neurotrophic factor-release in the striatum, followed by activation of ERK1/2 and mTOR pathway signaling. This ultimately leads to morphological changes in dendritic spines on striatal medium spiny neurons that correlate with the behavioral effects, specifically a reduction in the density of mushroom spines, a dendritic spine phenotype that shows a high correlation with LID. These molecular and cellular changes match those occurring in hippocampus and cortex after effective sub-anesthetic ketamine treatment in preclinical models of depression, and point to common mechanisms underlying the therapeutic efficacy of ketamine for these two disorders. These preclinical mechanistic studies complement current ongoing clinical testing of sub-anesthetic ketamine for the treatment of LID by our group, and provide further evidence in support of repurposing ketamine to treat individuals with PD. Given its clinically proven therapeutic benefit for both treatment-resistant depression and several pain states, very common co-morbidities in PD, sub-anesthetic ketamine could provide multiple therapeutic benefits for PD in the future.


Assuntos
Anestésicos Dissociativos/uso terapêutico , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Ketamina/uso terapêutico , Levodopa/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Depressão/tratamento farmacológico , Depressão/psicologia , Reposicionamento de Medicamentos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/efeitos dos fármacos
9.
BMC Res Notes ; 13(1): 149, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164786

RESUMO

OBJECTIVES: Dopamine-replacement utilizing L-DOPA is still the mainstay treatment for Parkinson's disease (PD), but often leads to development of L-DOPA-induced dyskinesia (LID), which can be as debilitating as the motor deficits. There is currently no satisfactory pharmacological adjunct therapy. The endogenous opioid peptides enkephalin and dynorphin are important co-transmitters in the direct and indirect striatofugal pathways and have been implicated in genesis and expression of LID. Opioid receptor antagonists and agonists with different selectivity profiles have been investigated for anti-dyskinetic potential in preclinical models. In this study we investigated effects of the highly-selective µ-opioid receptor antagonist CTAP (> 1200-fold selectivity for µ- over δ-opioid receptors) and a novel glycopeptide congener (gCTAP5) that was glycosylated to increase stability, in the standard rat LID model. RESULTS: Intraperitoneal administration (i.p.) of either 0.5 mg/kg or 1 mg/kg CTAP and gCTAP5 completely blocked morphine's antinociceptive effect (10 mg/kg; i.p.) in the warm water tail-flick test, showing in vivo activity in rats after systemic injection. Neither treatment with CTAP (10 mg/kg; i.p.), nor gCTAP5 (5 mg/kg; i.p.) had any effect on L-DOPA-induced limb, axial, orolingual, or locomotor abnormal involuntary movements. The data indicate that highly-selective µ-opioid receptor antagonism alone might not be sufficient to be anti-dyskinetic.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides mu/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glicopeptídeos/farmacologia , Masculino , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo
10.
J Nucl Med Technol ; 48(2): 154-157, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31604897

RESUMO

Racial and ethnic disparities in the prevalence of neurodegenerative diseases exist. This study examined the agreement between gold standard diagnosis and visual assessment of dopamine transporter (DaT) imaging in Hispanic and non-Hispanic patients being evaluated for Parkinsonian syndromes (PS). Methods: A retrospective review of DaT imaging and demographic data was performed with institutional review board approval. Documented interpretation by visual assessment was used to classify scans as normal or abnormal. The gold standard for the final diagnosis of PS was determined by a neurologist after 2 or more years of clinical follow-up. Data were analyzed with a z-test for uncorrelated samples. Results: In 30 Hispanic patients, DaT imaging was abnormal in 17, normal in 12, and nondiagnostic in 1. Of those with abnormal imaging, PS was confirmed in 16 of 17. Of those with normal imaging, no PS was confirmed in any patient. Sensitivity was 100%, and specificity was 92%. The single patient with nondiagnostic imaging was excluded. Of 77 non-Hispanic patients, visual assessment of DaT imaging was abnormal in 51. Of those with abnormal imaging, PS was confirmed in 48 of 51. Of those with normal imaging, no PS was confirmed in 22 of 26. Sensitivity was 92%, and specificity was 88%. There was no statistically significant difference (z = 0.34) in the rates of agreement between the gold standard and DaT imaging in Hispanic versus non-Hispanic patients. The study sample size afforded a power of 0.60. Conclusion: No significant difference was found in the accuracy of DaT imaging between Hispanic and non-Hispanic patients. Accuracy was high for both groups.


Assuntos
Diagnóstico por Imagem/métodos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hispânico ou Latino/estatística & dados numéricos , Radioisótopos do Iodo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Estudos Retrospectivos
11.
Neuropharmacology ; 141: 260-271, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201210

RESUMO

Dopamine (DA)-replacement therapy utilizing l-DOPA is the gold standard symptomatic treatment for Parkinson's disease (PD). A critical complication of this therapy is the development of l-DOPA-induced dyskinesia (LID). The endogenous opioid peptides, including enkephalins and dynorphin, are co-transmitters of dopaminergic, GABAergic, and glutamatergic transmission in the direct and indirect striatal output pathways disrupted in PD, and alterations in expression levels of these peptides and their precursors have been implicated in LID genesis and expression. We have previously shown that the opioid glycopeptide drug MMP-2200 (a.k.a. Lactomorphin), a glycosylated derivative of Leu-enkephalin mediates potent behavioral effects in two rodent models of striatal DA depletion. In this study, the mixed mu-delta agonist MMP-2200 was investigated in standard preclinical rodent models of PD and of LID to evaluate its effects on abnormal involuntary movements (AIMs). MMP-2200 showed antiparkinsonian activity, while increasing l-DOPA-induced limb, axial, and oral (LAO) AIMs by ∼10%, and had no effect on dopamine receptor 1 (D1R)-induced LAO AIMs. In contrast, it markedly reduced dopamine receptor 2 (D2R)-like-induced LAO AIMs. The locomotor AIMs were reduced by MMP-2200 in all three conditions. The N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 has previously been shown to be anti-dyskinetic, but only at doses that induce parkinsonism. When MMP-2200 was co-administered with MK-801, MK-801-induced pro-parkinsonian activity was suppressed, while a robust anti-dyskinetic effect remained. In summary, the opioid glycopeptide MMP-2200 reduced AIMs induced by a D2R-like agonist, and MMP-2200 modified the effect of MK-801 to result in a potent reduction of l-DOPA-induced AIMs without induction of parkinsonism.


Assuntos
Benzazepinas/farmacologia , Discinesia Induzida por Medicamentos/prevenção & controle , Glicopeptídeos/farmacologia , Levodopa/efeitos adversos , Doença de Parkinson Secundária/prevenção & controle , Quimpirol/antagonistas & inibidores , Animais , Antiparkinsonianos/farmacologia , Benzazepinas/antagonistas & inibidores , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Sinergismo Farmacológico , Levodopa/antagonistas & inibidores , Masculino , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Quimpirol/farmacologia , Ratos
12.
Front Neural Circuits ; 12: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150926

RESUMO

Introduction: Treatment-resistant depression, post-traumatic stress disorder, chronic pain, and L-DOPA-induced dyskinesia in Parkinson's disease are characterized by hypersynchronous neural oscillations. Sub-anesthetic ketamine is effective at treating these conditions, and this may relate to ketamine's capacity to reorganize oscillatory activity throughout the brain. For example, a single ketamine injection increases gamma (∼40 Hz) and high-frequency oscillations (HFOs, 120-160 Hz) in the cortex, hippocampus, and striatum. While the effects of single injections have been investigated, clinical ketamine treatments can involve 5-h up to 3-day sub-anesthetic infusions. Little is known about the effects of such prolonged exposure on neural synchrony. We hypothesized that hours-long exposure entrains circuits that generate HFOs so that HFOs become sustained after ketamine's direct effects on receptors subside. Methods: Local-field recordings were acquired from motor cortex (M1), striatum, and hippocampus of behaving rats (n = 8), and neural responses were measured while rats received 5 ketamine injections (20 mg/kg, i.p., every 2 h, 10-h exposure). In a second experiment, the same animals received injections of D1-receptor antagonist (SCH-23390, 1 mg/kg, i.p.) prior to ketamine injection to determine if D1 receptors were involved in producing HFOs. Results: Although HFOs remained stable throughout extended ketamine exposure, broad-band high-frequency activity (40-140 Hz) in the hippocampus and delta-HFO cross-frequency coupling (CFC) in dorsal striatum increased with the duration of exposure. Furthermore, while ketamine-triggered HFOs were not affected by D1 receptor blockade, ketamine-associated gamma in motor cortex was suppressed, suggesting involvement of D1 receptors in ketamine-mediated gamma activity in motor cortex. Conclusion: Prolonged ketamine exposure does not enhance HFOs in corticostriatal circuits, but, instead, enhances coordination between low and high frequencies in the striatum and reduces synchrony in the hippocampus. Increased striatal CFC may facilitate spike-timing dependent plasticity, resulting in lasting changes in motor activity. In contrast, the observed wide-band high-frequency "noise" in the hippocampus suggests that ketamine disrupts action-potential timing and reorganizes connectivity in this region. Differential restructuring of corticostriatal and limbic circuits may contribute to ketamine's clinical benefits.


Assuntos
Antagonistas de Dopamina/farmacologia , Sincronização de Fases em Eletroencefalografia/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Comportamento Animal , Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Masculino , Córtex Motor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Brain Connect ; 8(6): 343-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29877094

RESUMO

Many nonmotor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion-tensor imaging (DTI) is suitable for detecting changes in brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved region of interest-based analysis methods. Results showed that (i) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; (ii) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Doença de Parkinson/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem
14.
Parkinsons Dis ; 2018: 3402983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686832

RESUMO

Little is known regarding depression treatment patterns and predictors among older adults with comorbid Parkinson's disease and depression (dPD) in the United States (US). The objective of this study was to assess the patterns and predictors of depression treatment among older adults with dPD in the US. We adopted a cross-sectional study design by pooling multiple-year data (2005-2011) from the National Ambulatory Medical Care Survey (NAMCS) and the outpatient department of the National Hospital Ambulatory Medical Care Survey (NHAMCS). The final study sample consisted of visits by older adults with dPD. Depression treatment was defined as antidepressant use with or without psychotherapy. To identify predictors of depression treatment, multivariate logistic regression analysis was conducted adjusting for predisposing, enabling, and need factors. Individuals with dPD and polypharmacy were 74% more likely to receive depression treatment (odds ratio = 1.743, 95% CI 1.376-2.209), while dPD subjects with comorbid chronic conditions were 44% less likely (odds ratio = 0.559, 95% CI 0.396-0.790) to receive depression treatment. Approximately six out of ten older adults with PD and depression received depression treatment. Treatment options for dPD are underutilized in routine clinical practice, and further research should explore how overall medical complexity presents a barrier to depression treatment.

15.
Parkinsons Dis ; 2017: 4263795, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473940

RESUMO

Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease. Here we summarize what is currently known about the mechanism of action of VEGF-B in pathological processes. We explore its potential as a homeostatic protective factor that improves mitochondrial function in the setting of cardiovascular and neurological disease, with a specific focus on dopaminergic neurons in Parkinson's disease.

16.
Front Neurosci ; 11: 737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379409

RESUMO

The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history. Here, we compared primary skin fibroblasts obtained from individuals diagnosed with late-onset sporadic PD, and healthy age-matched controls. These fibroblasts were studied from fundamental viewpoints of growth and morphology, as well as redox, mitochondrial, and autophagic function. It was observed that fibroblasts from PD subjects had higher growth rates, and appeared distinctly different in terms of morphology and spatial organization in culture, compared to control cells. It was also found that the PD fibroblasts exhibited significantly compromised mitochondrial structure and function when assessed via morphological and oxidative phosphorylation assays. Additionally, a striking increase in baseline macroautophagy levels was seen in cells from PD subjects. Exposure of the skin fibroblasts to physiologically relevant stress, specifically ultraviolet irradiation (UVA), further exaggerated the autophagic dysfunction in the PD cells. Moreover, the PD fibroblasts accumulated higher levels of reactive oxygen species (ROS) coupled with lower cell viability upon UVA treatment. In essence, these studies highlight primary skin fibroblasts as a patient-relevant model that captures fundamental PD molecular mechanisms, and supports their potential utility to develop diagnostic and prognostic biomarkers for the disease.

17.
Surg Neurol Int ; 7(Suppl 35): S824-S826, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990313

RESUMO

BACKGROUND: The long-term safety of deep brain stimulation (DBS) is an important issue because new applications are being investigated for a variety of disorders. Studying instances where DBS was inadvertently implanted in patients without a movement disorder may provide information about the safety of the therapy. We report the case of a patient with a psychogenic movement disorder treated with deep brain stimulation (DBS). CASE DESCRIPTION: The patient presented at our clinic after 5 years of chronic DBS of the subthalamic nucleus (STN) for presumed Parkinson's disease. A dopamine transporter (DAT) scan (DaTscan) showed normal DAT distribution in the striatum. A positron emission tomography (PET) scan showed no abnormal metabolic patterns. Further psychiatric and neurological evaluations revealed that the patient was suffering from a psychogenic movement disorder. The patient displayed no sign or symptom from the stimulation, and DBS did not lead to any benefits or side effects for this patient. CONCLUSION: We argue that the absence of side effects, the normal DaTscan, and PET scan after 5 years of chronic stimulation illustrate the safety of DBS on neural tissue.

18.
Case Rep Neurol ; 8(1): 53-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293405

RESUMO

Ketamine is an FDA-approved drug with a known safety profile. Low-dose subanesthetic intravenous ketamine infusion treatment has led to long-term reduction of treatment-resistant depression and of chronic pain states. We report on low-dose subanesthetic intravenous ketamine infusion treatment in Parkinson's disease (PD) patients by 5 case studies and show a long-lasting therapeutic benefit to reduce l-DOPA-induced dyskinesia (LID), improve on time, and reduce depression. Based on the literature we hypothesize that low-dose ketamine may act as a 'chemical deep brain stimulation', by desynchronizing hypersynchronous oscillatory brain activity, including in the basal ganglia and the motor cortex. The presented PD case reports indicate tolerability, safety and long-term beneficial effects of low-dose ketamine infusion that should be further investigated in a properly controlled prospective clinical trial for treatment of LID, as well as the prevalent nonmotor features pain and depression in PD patients.

19.
Neurosci Lett ; 612: 121-125, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26644333

RESUMO

Low-dose sub-anesthetic ketamine infusion treatment has led to a long-term reduction of treatment-resistant depression and posttraumatic stress disorder (PTSD) symptom severity, as well as reduction of chronic pain states, including migraine headaches. Ketamine also is known to change oscillatory electric brain activity. One commonality between migraine headaches, depression, PTSD, Parkinson's disease (PD) and l-DOPA-induced dyskinesias (LID) is hypersynchrony of electric activity in the brain, including the basal ganglia. Therefore, we investigated the use of low-dose sub-anesthetic ketamine in the treatment of LID. In a preclinical rodent model of LID, ketamine (5-20mg/kg) led to long-term dose-dependent reduction of abnormal involuntary movements, only when low-dose ketamine was given for 10h continuously (5× i.p. injections two hours apart) and not after a single acute low-dose ketamine i.p. injection. Pharmacokinetic analysis of plasma levels showed ketamine and its major metabolites were not detectable any more at time points when a lasting anti-dyskinetic effect was seen, indicating a plastic change in the brain. This novel use of low-dose sub-anesthetic ketamine infusion could lead to fast clinical translation, and since depression and comorbid pain states are critical problems for many PD patients could open up the road to a new dual therapy for patients with LID.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Ketamina/uso terapêutico , Levodopa/efeitos adversos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores Opioides/agonistas , Animais , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/fisiopatologia , Ketamina/farmacocinética , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
20.
Gerontology ; 61(1): 3-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25341431

RESUMO

BACKGROUND: Postural balance and potentially fall risk increases among older adults living with neurological diseases, especially Parkinson's disease (PD). Since conventional therapies such as levodopa or deep brain stimulation may fail to alleviate or may even worsen balance, interest is growing in evaluating alternative PD therapies. OBJECTIVE: The purpose of the current study was to assess improvement in postural balance in PD patients following electroacupuncture (EA) as an alternative therapy. METHODS: 15 aging adults (71.2 ± 6.3 years) with idiopathic PD and 44 healthy age-matched participants (74.6 ± 6.5 years) were recruited. The PD participants were randomly assigned (at a ratio of 2:1) to an intervention (n = 10) or to a control group (n = 5). The intervention group received a 30-min EA treatment on a weekly basis for 3 weeks, while the control group received a sham treatment. Outcomes were assessed at baseline and after the final therapy. Measurements included balance assessment, specifically the ratio of medial-lateral (ML) center-of-gravity (COG) sway to anterior-posterior (AP) sway (COGML/AP) and ankle/hip sway during eyes-open, eyes-closed, and eyes-open dual-task trials, the Unified Parkinson's Disease Rating Scale (UPDRS), as well as quality of life, concerns for fall, and pain questionnaires. RESULTS: No difference was observed for the assessed parameters between the intervention and the control group at baseline. After treatment, an improvement in balance performance was observed in the intervention group. Compared with the healthy population, PD patients prior to treatment had larger COGML/AP sway with more dependency on upper-body movements for maintaining balance. Following EA therapy, COGML/AP sway was reduced by 31% and ankle/hip sway increased by 46% in the different conditions (p = 0.02 for the dual-task condition). The clinical rating revealed an overall improvement (p < 0.01) in mentation, behavior, and mood (UPDRS part I, 49%), activities of daily living (UPDRS part II, 46%), and motor examination (UPDRS part III, 40%). There was a significant reduction (p < 0.02) in the specific items regarding UPDRS fall status (67%) and rigidity (48%). Changes were small and nonsignificant in the controls (p > 0.29). CONCLUSIONS: This pilot study demonstrates improvement in rigidity and balance following EA. These preliminary results suggest EA could be a promising alternative treatment for balance disturbance in PD.


Assuntos
Atividades Cotidianas , Afeto , Eletroacupuntura/métodos , Doença de Parkinson/terapia , Equilíbrio Postural/fisiologia , Idoso , Idoso de 80 Anos ou mais , Articulação do Tornozelo , Método Duplo-Cego , Feminino , Gravitação , Articulação do Quadril , Humanos , Medicina Integrativa , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Projetos Piloto , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...