Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9591-9600, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38759639

RESUMO

Methane is a major contributor to anthropogenic greenhouse gas emissions. Identifying large sources of methane, particularly from the oil and gas sectors, will be essential for mitigating climate change. Aircraft-based methane sensing platforms can rapidly detect and quantify methane point-source emissions across large geographic regions, and play an increasingly important role in industrial methane management and greenhouse gas inventory. We independently evaluate the performance of five major methane-sensing aircraft platforms: Carbon Mapper, GHGSat-AV, Insight M, MethaneAIR, and Scientific Aviation. Over a 6 week period, we released metered gas for over 700 single-blind measurements across all five platforms to evaluate their ability to detect and quantify emissions that range from 1 to over 1,500 kg(CH4)/h. Aircraft consistently quantified releases above 10 kg(CH4)/h, and GHGSat-AV and Insight M detected emissions below 5 kg(CH4)/h. Fully blinded quantification estimates for platforms using downward-facing imaging spectrometers have parity slopes ranging from 0.76 to 1.13, with R2 values of 0.61 to 0.93; the platform using continuous air sampling has a parity slope of 0.5 (R2 = 0.93). Results demonstrate that aircraft-based methane sensing has matured since previous studies and is ready for an increasingly important role in environmental policy and regulation.


Assuntos
Aeronaves , Gases de Efeito Estufa , Metano , Metano/análise , Gases de Efeito Estufa/análise , Monitoramento Ambiental/métodos , Mudança Climática , Poluentes Atmosféricos/análise
2.
Nature ; 627(8003): 328-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480966

RESUMO

As airborne methane surveys of oil and gas systems continue to discover large emissions that are missing from official estimates1-4, the true scope of methane emissions from energy production has yet to be quantified. We integrate approximately one million aerial site measurements into regional emissions inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas production over 15 aerial campaigns. We construct complete emissions distributions for each, employing empirically grounded simulations to estimate small emissions. Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 0.84%) of covered natural gas production in a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national government inventory estimate5. Only 0.05-1.66% of well sites contribute the majority (50-79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, including pipelines, contribute 18-57% of estimated regional emissions, similarly concentrated in a small number of point sources. Together, the emissions quantified here represent an annual loss of roughly US$1 billion in commercial gas value and a US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing surveys offer a path to detect these low-frequency, high-consequence emissions for rapid mitigation, incorporation into official emissions inventories and a clear-eyed assessment of the most effective emission-finding technologies for a given region.

3.
Nat Commun ; 14(1): 7391, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968304

RESUMO

Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors, but to maximize emission reductions, supplied hydrogen must be reliable, low-emission, and low-cost. Here, we build a model that enables direct comparison of the cost of producing net-zero, hourly-reliable hydrogen from various pathways. To reach net-zero targets, we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California, Texas, and New York), model results indicate next-decade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However, when omitting the net-zero emission constraint and considering the U.S. regulatory environment, electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.

4.
Sci Rep ; 13(1): 3836, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882586

RESUMO

Satellites are increasingly seen as a tool for identifying large greenhouse gas point sources for mitigation, but independent verification of satellite performance is needed for acceptance and use by policy makers and stakeholders. We conduct to our knowledge the first single-blind controlled methane release testing of satellite-based methane emissions detection and quantification, with five independent teams analyzing data from one to five satellites each for this desert-based test. Teams correctly identified 71% of all emissions, ranging from 0.20 [0.19, 0.21] metric tons per hour (t/h) to 7.2 [6.8, 7.6] t/h. Three-quarters (75%) of quantified estimates fell within ± 50% of the metered value, comparable to airplane-based remote sensing technologies. The relatively wide-area Sentinel-2 and Landsat 8 satellites detected emissions as low as 1.4 [1.3, 1.5, 95% confidence interval] t/h, while GHGSat's targeted system quantified a 0.20 [0.19, 0.21] t/h emission to within 13%. While the fraction of global methane emissions detectable by satellite remains unknown, we estimate that satellite networks could see 19-89% of total oil and natural gas system emissions detected in a recent survey of a high-emitting region.

5.
ACS Omega ; 7(48): 43973-43980, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506195

RESUMO

Natural gas distribution systems within municipalities supply a substantial fraction of energy consumed in the United States. As decarbonization of the natural gas system necessitates new modes of operation outside original design purposes, for example, increased hydrogen or biogas blending, it becomes increasingly important to understand in advance how existing infrastructure will respond to these changes. Such an analysis will require detailed information about the existing asset base, such as local soil composition, plastic type, and other characteristics that are not systematically tracked at present or have substantial missing data. Opportunistic sampling, for example, collecting measurements at assets that are already undergoing maintenance, has the potential to substantially reduce the cost of gathering such data but only if the results are representative of the full asset base. To assess prospects for such an approach, we employ a dataset including the entire service line and leak database from a large natural gas distribution utility (∼66,700 km of service pipelines and over 530,000 leaks over decades of observations). This dataset shows that service lines affected by excavation damage produce an approximately random sample of plastic and steel service lines, with similar distributions of component age, operating pressure, and pipeline diameter, as well as a relatively uniform spatial distribution. This means that opportunistic measurements at these locations will produce a first-order estimate of the relative prevalence of key characteristics across the utility's full asset base of service lines. We employ this approach to estimate the plastic type, which is unknown for roughly 80% of plastic service lines in the database. We also find that while 32% of leaks across all components occur in threaded steel junctions, excavation damage accounts for 75% of hazardous grade 1 leaks in plastic service lines and corrosion accounts for 47% in steel service lines. Insights from this sampling approach can thus help natural gas utilities collect the data they need to ensure a safe and reliable transition to a lower-emission system.

6.
Environ Sci Technol ; 56(7): 4317-4323, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35317555

RESUMO

Limiting emissions of climate-warming methane from oil and gas (O&G) is a major opportunity for short-term climate benefits. We deploy a basin-wide airborne survey of O&G extraction and transportation activities in the New Mexico Permian Basin, spanning 35 923 km2, 26 292 active wells, and over 15 000 km of natural gas pipelines using an independently validated hyperspectral methane point source detection and quantification system. The airborne survey repeatedly visited over 90% of the active wells in the survey region throughout October 2018 to January 2020, totaling approximately 98 000 well site visits. We estimate total O&G methane emissions in this area at 194 (+72/-68, 95% CI) metric tonnes per hour (t/h), or 9.4% (+3.5%/-3.3%) of gross gas production. 50% of observed emissions come from large emission sources with persistence-averaged emission rates over 308 kg/h. The fact that a large sample size is required to characterize the heavy tail of the distribution emphasizes the importance of capturing low-probability, high-consequence events through basin-wide surveys when estimating regional O&G methane emissions.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , New Mexico , Poços de Água
7.
Nat Commun ; 12(1): 4715, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354066

RESUMO

Methane (CH4) emissions from oil and natural gas (O&NG) systems are an important contributor to greenhouse gas emissions. In the United States, recent synthesis studies of field measurements of CH4 emissions at different spatial scales are ~1.5-2× greater compared to official greenhouse gas inventory (GHGI) estimates, with the production-segment as the dominant contributor to this divergence. Based on an updated synthesis of measurements from component-level field studies, we develop a new inventory-based model for CH4 emissions, for the production-segment only, that agrees within error with recent syntheses of site-level field studies and allows for isolation of equipment-level contributions. We find that unintentional emissions from liquid storage tanks and other equipment leaks are the largest contributors to divergence with the GHGI. If our proposed method were adopted in the United States and other jurisdictions, inventory estimates could better guide CH4 mitigation policy priorities.

8.
Environ Sci Technol ; 55(11): 7583-7594, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983018

RESUMO

Sectors such as aviation may require low-carbon liquid fuels to dramatically reduce emissions. This analysis characterizes the economic viability of electrofuels, synthesized from CO2 from direct air capture (DAC) and hydrogen from electrolysis of water, powered primarily by solar or wind electricity. This optimization-based techno-economic analysis suggests that using today's technology, hydrocarbon electrofuels would cost upward of $4/liter of gasoline equivalent (lge), potentially falling to $1.7-1.8/lge in the next decade and <$1/lge by 2050. Only in the latter case are electrofuels potentially less costly than using petroleum fuels offset with DAC with sequestration. Achieving low-end electrofuel costs is contingent on substantial reductions in the capital cost of DAC, electrolyzers, and renewable electricity generation. However, the system also requires sufficient operational flexibility to efficiently power this capital-intensive equipment on variable electricity. Such forms of flexibility include various types of storage, supplementary natural gas and grid electricity interconnections (penalized with a steep carbon price), curtailment, and the ability to modestly adjust fuel synthesis and DAC operating levels over time scales of several hours to days.


Assuntos
Eletricidade , Hidrogênio , Dióxido de Carbono/análise , Eletrólise , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA