Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 51, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726321

RESUMO

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain. Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.

2.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778403

RESUMO

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration. Highlights: Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.

3.
Anal Chem ; 84(3): 1235-9, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22280026

RESUMO

We present dye-doped polymer nanoparticles that are able to detect mercury in aqueous solution at parts per billion levels via fluorescence resonance energy transfer (FRET). The nanoparticles are prepared by reprecipitation of highly fluorescent conjugated polymers in water and are stable in aqueous suspension. They are doped with rhodamine spirolactam dyes that are nonfluorescent until they encounter mercury ions, which promote an irreversible reaction that converts the dyes to fluorescent rhodamines. The rhodamine dyes act as FRET acceptors for the fluorescent nanoparticles, and the ratio of nanoparticle-to-rhodamine fluorescence intensities functions as a ratiometric fluorescence chemodosimeter for mercury. The light harvesting capability of the conjugated polymer nanoparticles enhances the fluorescence intensity of the rhodamine dyes by a factor of 10, enabling sensitive detection of mercury ions in water at levels as low as 0.7 parts per billion.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Mercúrio/análise , Nanopartículas/química , Polímeros/química , Água/análise , Íons/química , Rodaminas/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA