Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(3): 507-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648769

RESUMO

Some tricyclic antidepressants (TCAs), including amitriptyline (ATL), clomipramine (CLO), and desipramine (DES), are known to be effective for management of neuropathic pain. It was previously determined that ATL, CLO, and DES are capable of voltage-dependent blocking of NMDA receptors of glutamate (NMDAR), which play a key role in pathogenesis of neuropathic pain. Despite the similar structure of ATL, CLO, and DES, efficacy of their interaction with NMDAR varies significantly. In the study presented here, we applied molecular modeling methods to investigate the mechanism of binding of ATL, CLO, and DES to NMDAR and to identify structural features of the drugs that determine their inhibitory activity against NMDAR. Molecular docking of the studied TCAs into the NMDAR channel was performed. Conformational behavior of the obtained complexes in the lipid bilayer was simulated by the method of molecular dynamics (MD). A single binding site (upper) for the tertiary amines ATL and CLO and two binding sites (upper and lower) for the secondary amine DES were identified inside the NMDAR channel. The upper and lower binding sites are located along the channel axis at different distances from the extracellular side of the plasma membrane. MD simulation revealed that the position of DES in the lower site is stabilized only in the presence of sodium cation inside the NMDAR channel. DES binds more strongly to NMDAR compared to ATL and CLO due to simultaneous interaction of two hydrogen atoms of its cationic group with the asparagine residues of the ion pore of the receptor. This feature may be responsible for the stronger side effects of DES. It has been hypothesized that ATL binds to NMDAR less efficiently compared to DES and CLO due to its lower conformational mobility. The identified features of the structure- and cation-dependent mechanism of interaction between TCAs and NMDAR will help in the further development of effective and safe analgesic therapy.


Assuntos
Antidepressivos Tricíclicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/química , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/metabolismo , Antidepressivos Tricíclicos/química , Sítios de Ligação , Amitriptilina/química , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Humanos , Clomipramina/farmacologia , Clomipramina/química , Clomipramina/metabolismo , Cátions/metabolismo , Cátions/química , Desipramina/farmacologia , Ligação Proteica
2.
Heliyon ; 10(6): e27367, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524546

RESUMO

Both peripheral neuropathy and depression can be viewed as neurodegeneration's consequences of diabetes, at least in part coexisting with or resulting from sodium-calcium dysbalance. This study aims to assess the therapeutic potential of the orally applied reverse-mode inhibitor of the sodium-calcium exchanger (NCX) KB-R7943 in the streptozotocin (STZ) diabetes model in rats. A pilot pharmacokinetic (PK) study with high-performance liquid chromatography with high-resolution tandem mass spectrometric detection revealed higher drug exposure (AUC), lower volume of distribution (Vd) and clearance (Cl), and faster decline of the plasma concentration (ƛ) in rats with diabetes vs. controls. Brain and heart accumulation and urinary excretion of the unmetabolized KB-R7943 at least 24 h were also demonstrated in all rats. However, heart and hippocampus KB-R7943 penetration (AUCtissue/AUCplasma) was higher in controls vs. diabetic rats. The development of thermal, mechanical, and chemical-induced allodynia was assessed with the Cold plate test (CPT), Randall-Stiletto (R-S) test, and 0.5% formalin test (FT). Amitriptyline 10 mg/kg, KB-R7943 5 mg/kg, or 10 mg/kg p.o once daily was applied from the 28th to the 49th day. The body weight, coat status, CPT, R-S, and FT were evaluated on days (-5), 0, and 42. On day 41, a forced swim test and 24-h spontaneous physical activities were assessed. The chronic treatment effects were calculated as % of the maximum. A dose-depended amelioration of neuropathic and depression-like effects was demonstrated. The oral application of KB-R7943 for potentially treating neurodegenerative consequences of diabetes merits further studies. The brain, heart, and kidneys are essential contributors to the PKs of this drug, and their safety involvement needs to be further characterized.

3.
Cancer Epidemiol ; 82: 102315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608497

RESUMO

BACKGROUND: Gastric cancer (GC) is in top-five the most frequent cancers in Ukrainian males and is the third cause of death among patients with cancer. GC keeps its leading position in cancer ranks despite the decline in incidence and mortality over the last 50 years. Local epidemiological information will help in better targeting medical and public health interventions. PATIENTS AND METHODS: The data about 8438 patients with newly diagnosed GC between 2009 and 2019 was obtained from Dnipro Cancer Registry. RESULTS: Incidence decreased from 24.5 to 22.6, mortality decreased from 21.4 to 15.7 (per 100000), death rate increased from 0.64 to 1.04 between 2009 and 2019. Over 11 years of observation incidence was 23.4, mortality was 19.4, death rate was 0.721. Standardised incidence ratio was 1.42, standardised mortality rate was 1.67; age-standardised incidence was 25.5, age-standardised mortality was 21.2 (European standard). Median (95% confidence interval (95% CI)) survival of the patients was 172 (165-178) days. One-year survival rate fluctuated between 27% and 34%. Male sex and older age were associated with higher risk of death (hazard ratio (95% CI) - 1.08 (1.03-1.13) vs females and 1.15 (1.12-1.17) per 10-years increase of age, respectively). CONCLUSIONS: The study describes the trends in epidemiology of gastric cancer in Dnipro region, Ukraine, between 2009 and 2019. The need for the national prevention strategy of GC in Ukraine was identified.


Assuntos
Neoplasias Gástricas , Feminino , Humanos , Masculino , Neoplasias Gástricas/epidemiologia , Ucrânia/epidemiologia , Incidência , Taxa de Sobrevida , Sistema de Registros
4.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445727

RESUMO

Bemethyl is an actoprotector, an antihypoxant, and a moderate psychostimulant. Even though the therapeutic effectiveness of bemethyl is well documented, there is a gap in knowledge regarding its metabolic products and their quantitative and qualitative characteristics. Since 2018, bemethyl is included to the Monitoring Program of the World Anti-Doping Agency, which highlights the challenge of identifying its urinary metabolites. The objective of the study was to investigate the biotransformation pathways of bemethyl using a combination of liquid chromatography-high-resolution mass spectrometry and in silico studies. Metabolites were analyzed in a 24 h rat urine collected after oral administration of bemethyl at a single dose of 330 mg/kg. The urine samples were prepared for analysis by a procedure developed in the present work and analyzed by high performance liquid chromatography-tandem mass spectrometry. For the first time, nine metabolites of bemethyl with six molecular formulas were identified in rat urine. The most abundant metabolite was a benzimidazole-acetylcysteine conjugate; this biotransformation pathway is associated with the detoxification of xenobiotics. The BioTransformer and GLORY computational tools were used to predict bemethyl metabolites in silico. The molecular docking of bemethyl and its derivatives to the binding site of glutathione S-transferase has revealed the mechanism of bemethyl conjugation with glutathione. The findings will help to understand the pharmacokinetics and pharmacodynamics of actoprotectors and to improve antihypoxant and adaptogenic therapy.


Assuntos
Benzimidazóis/urina , Animais , Biotransformação , Cromatografia Líquida , Simulação por Computador , Espectrometria de Massas , Simulação de Acoplamento Molecular , Ratos
5.
ACS Chem Neurosci ; 12(11): 1948-1960, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027667

RESUMO

Kinesins are the motor proteins that transport excitatory receptors to the synaptic membrane by forming a complex with receptor cargo leading to central sensitization causing neuropathic pain. Many regulatory proteins govern the transit of receptors by activating kinesin, and Aurora kinases are one of them. In this study, we have performed in silico molecular dynamics simulation to delineate the dynamic interaction of Aurora kinase A with its pharmacological inhibitor, tozasertib. The results from the molecular dynamics study shows that tozasertib-Aurora kinase A complex is stabilized through hydrogen bonding, polar interactions, and water bridges. Findings from the in vitro studies suggest that tozasertib treatment significantly attenuates lipopolysaccharide (LPS)-induced increase in oxidonitrosative stress and kif11 overexpression in C6 glial cell lines. Further, we investigated the regulation of kif11 and its modulation by tozasertib in an animal model of neuropathic pain. Two weeks post-CCI surgery we observed a significant increase in pain hypersensitivity and kif11 overexpression in DRG and spinal cord of nerve-injured rats. Tozasertib treatment significantly attenuates enhanced pain hypersensitivity along with the restoration of kif11 expression in DRG and spinal cord and oxidonitrosative stress in the sciatic nerve of injured rats. Our findings demonstrate the potential role of tozasertib for the management of neuropathic pain.


Assuntos
Neuralgia , Nociceptividade , Animais , Aurora Quinases , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Piperazinas , Ratos , Medula Espinal
6.
Front Pharmacol ; 12: 815368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237149

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are an essential target for the analgetic action of tricyclic antidepressants (TCAs). Their therapeutic blood concentrations achieve 0.5-1.5 µM, which, however, are insufficient to cause in vitro the open-channel block known as the only effect of TCAs on NMDARs. Whereas structures of amitriptyline (ATL), desipramine (DES), and clomipramine (CLO) are rather similar these compounds manifest different therapeutic profiles and side effects. To study structure-activity relationships of DES and CLO on NMDARs, we measured IC50s as a function of extracellular calcium ([Ca2+]) and membrane voltage (Vm) of NMDAR currents recorded in cortical neurons. Here two components of TCA action on NMDARs are described, which could be characterized as the Ca2+-dependent inhibition and the open-channel block. DES demonstrated a profound Ca2+-dependent inhibition of NMDARs, while the CLO effect was weak. DES IC50 exhibited an e-fold change with a [Ca2+] shift of 0.59 mM, which is consistent with ATL. The Ca2+ dependence of NMDAR inhibition by DES disappeared in BAPTA loaded neurons, suggesting that Ca2+ acts from the inside. Since CLO differs from DES and ATL by the presence of Cl-atom in the structure, most likely, this is the atom which is responsible for the loss of pronounced [Ca2+] dependence. As for the NMDAR open-channel block, both DES and CLO were about 5-folds more potent than ATL due to their slow rates of dissociation either from open and closed states. DES demonstrated stronger Vm-dependence than CLO, suggesting a deeper location of the DES binding site within the ion pore. Because DES and CLO differ from ATL by the nitrogen-containing tricycle, presumably this moiety of the molecules determines their high-affinity binding with the NMDAR channel, while the aliphatic chain mono-methyl amino-group of DES allows a deep permeation in the channel. Thus, different structure-activity relationships of the Ca2+-dependent inhibition and Vm-dependent open-channel block of NMDARs by DES and CLO suggest that these processes are independent and most likely may represent an action on different molecular targets. The proposed model of TCA action on NMDARs predicts well the experimental values of IC50s at physiological [Ca2+] and within a wide range of Vms.

7.
Eur J Pharmacol ; 889: 173619, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011242

RESUMO

Neuropathic pain is a critical burdensome problem due to the complex interplay of several pathological mechanisms and lack of availability of effective therapeutic interventions. The available therapeutic options are associated with a variety of limitations, including severe side effects, and unmet medical needs, warranting further research to identify and validate potential targets. Adenosine receptors system is a widely studied target, which evidently was successful in alleviation of neuropathic pain in several experimental paradigms, and researchers are putting efforts in building its clinical roadmap. The adenosine receptors act by different mechanisms and targeting adenosine receptors for neuropathic pain includes several important pathways such as p38-mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK), brain-derived neurotrophic factor (BDNF) signalling, γ-aminobutyric acid (GABA) as well as the ion channel modulations. Various studies have also shown the relevance of targeting adenosine receptors in chemotherapy-induced neuropathic pain and diabetic neuropathy. Several drugs acting on adenosine receptors have undergone clinical trials for management of neuropathic pain, whereas many other drugs are yet to be studied to find a potential anti-nociceptive agent. In this review, we have discussed the roadmap of adenosine receptors as a potential target for the treatment of neuropathic pain.


Assuntos
Agonistas Adrenérgicos/metabolismo , Analgésicos/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/fisiologia , Agonistas Adrenérgicos/administração & dosagem , Analgésicos/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Neuralgia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Sci Rep ; 9(1): 19454, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857688

RESUMO

Although the tricyclic antidepressant amitriptyline (ATL) is widely used in the clinic, the mechanism underlying its high therapeutic efficacy against neuropathic pain remains unclear. NMDA receptors (NMDARs) represent a target for ATL and are involved in sensitization of neuropathic pain. Here we describe two actions of ATL on NMDARs: 1) enhancement of Ca2+-dependent desensitization and 2) trapping channel block. Inhibition of NMDARs by ATL was found to be dependent upon external Ca2+ concentration ([Ca2+]) in a voltage-independent manner, with an IC50 of 0.72 µM in 4 mM [Ca2+]. The ATL IC50 value increased exponentially with decreasing [Ca2+], with an e-fold change observed per 0.69 mM decrease in [Ca2+]. Loading neurons with BAPTA abolished Ca2+-dependent inhibition, suggesting that Ca2+ affects NMDARs from the cytosol. Since there is one known Ca2+-dependent process in gating of NMDARs, we conclude that ATL most likely promotes Ca2+-dependent desensitization. We also found ATL to be a trapping open-channel blocker of NMDARs with an IC50 of 220 µM at 0 mV. An e-fold change in ATL IC50 was observed to occur with a voltage shift of 50 mV in 0.25 mM [Ca2+]. Thus, we disclose here a robust dependence of ATL potency on extracellular [Ca2+], and demonstrate that ATL bound in the NMDAR pore can be trapped by closure of the channel.


Assuntos
Amitriptilina/farmacologia , Antidepressivos Tricíclicos/farmacologia , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Amitriptilina/uso terapêutico , Animais , Antidepressivos Tricíclicos/uso terapêutico , Células Cultivadas , Córtex Cerebral/citologia , Dor Crônica/complicações , Dor Crônica/dietoterapia , Dor Crônica/psicologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/psicologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/psicologia , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238561

RESUMO

Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.

10.
Brain Res ; 1660: 58-66, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28167075

RESUMO

It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca2+-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca2+-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca2+-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed.


Assuntos
Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Amitriptilina/farmacologia , Animais , Cloridrato de Atomoxetina/farmacologia , Encéfalo/metabolismo , Clorpromazina/farmacologia , Citalopram/farmacologia , Desipramina/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fluoxetina/farmacologia , Magnésio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Neurotransmissores/farmacologia , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...