Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 9(4): 045004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36046335

RESUMO

Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies. Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors. Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT. Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies.

2.
Int J Comput Assist Radiol Surg ; 17(12): 2263-2267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35986832

RESUMO

PURPOSE: Manual surgical manipulation of the tibia and fibula is necessary to properly align and reduce the space in ankle fractures involving sprain of the distal tibiofibular syndesmosis. However, manual reduction is highly variable and can result in malreduction in about half of the cases. Therefore, we are developing an image-guided robotic assistant to improve reduction accuracy. The purpose of this study is to quantify the forces associated with reduction of the ankle syndesmosis to define the requirements for our robot design. METHODS: Using a cadaveric specimen, we designed a fixture jig to fix the tibia securely on the operating table. We also designed a custom fibula grasping plate to which a force-torque measuring device is attached. The surgeon manually reduced the fibula utilizing this construct while translational and rotational forces along with displacement were being measured. This was first performed on an intact ankle without ligament injury and after the syndesmosis ligaments were cut. RESULTS: Six manipulation techniques were performed on the three principal directions of reduction at the cadaveric ankle. The results demonstrated the maximum force applied to the lateral direction to be 96.0 N with maximum displacement of 8.5 mm, applied to the anterior-posterior direction to be 71.6 N with maximum displacement of 10.7 mm, and the maximum torque applied to external-internal rotation to be 2.5 Nm with maximum rotation of 24.6°. CONCLUSIONS: The specific forces needed to perform the distal tibiofibular syndesmosis manipulation are not well understood. This study quantified these manipulation forces needed along with their displacement for accurate reduction of ankle syndesmosis. This is a necessary first step to help us define the design requirements of our robotic assistance from the aspects of forces and displacements.


Assuntos
Traumatismos do Tornozelo , Robótica , Humanos , Articulação do Tornozelo/cirurgia , Traumatismos do Tornozelo/cirurgia , Fíbula/cirurgia , Cadáver
3.
Med Phys ; 49(5): 3053-3066, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363391

RESUMO

BACKGROUND: Indirect detection flat-panel detectors (FPDs) consisting of hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are a prevalent technology for digital x-ray imaging. However, their performance is challenged in applications requiring low exposure levels, high spatial resolution, and high frame rate. Emerging FPD designs using metal oxide TFTs may offer potential performance improvements compared to FPDs based on a-Si:H TFTs. PURPOSE: This work investigates the imaging performance of a new indium gallium zinc oxide (IGZO) TFT-based detector in 2D fluoroscopy and 3D cone-beam CT (CBCT). METHODS: The new FPD consists of a sensor array combining IGZO TFTs with a-Si:H photodiodes and a 0.7-mm thick CsI:Tl scintillator. The FPD was implemented on an x-ray imaging bench with system geometry emulating intraoperative CBCT. A conventional FPD with a-Si:H TFTs and a 0.6-mm thick CsI:Tl scintillator was similarly implemented as a basis of comparison. 2D imaging performance was characterized in terms of electronic noise, sensitivity, linearity, lag, spatial resolution (modulation transfer function, MTF), image noise (noise-power spectrum, NPS), and detective quantum efficiency (DQE) with entrance air kerma (EAK) ranging from 0.3 to 1.2 µGy. 3D imaging performance was evaluated in terms of the 3D MTF and noise-equivalent quanta (NEQ), soft-tissue contrast-to-noise ratio (CNR), and image quality evident in anthropomorphic phantoms for a range of anatomical sites and dose, with weighted air kerma, K w ${K_w}$ , ranging from 0.8 to 4.9 mGy. RESULTS: The 2D imaging performance of the IGZO-based FPD exhibited up to ∼1.7× lower electronic noise than the a-Si:H FPD at matched pixel pitch. Furthermore, the IGZO FPD exhibited ∼27% increase in mid-frequency DQE (1 mm-1 ) at matched pixel size and dose (EAK ≈ 1.0 µGy) and ∼11% increase after adjusting for differences in scintillator thickness. 2D spatial resolution was limited by the scintillator for each FPD. The IGZO-based FPD demonstrated improved 3D NEQ at all spatial frequencies in both head (≥25% increase for all dose levels) and body (≥10% increase for K w ${K_w}$ ≤2 mGy) imaging scenarios. These characteristics translated to improved low-contrast visualization in anthropomorphic phantoms, demonstrating ≥10% improvement in CNR and extension of the low-dose range for which the detector is input-quantum limited. CONCLUSION: The IGZO-based FPD demonstrated improvements in electronic noise, image lag, and NEQ that translated to measurable improvements in 2D and 3D imaging performance compared to a conventional FPD based on a-Si:H TFTs. The improvements are most beneficial for 2D or 3D imaging scenarios involving low-dose and/or high-frame rate.


Assuntos
Gálio , Óxido de Zinco , Imageamento Tridimensional , Índio , Imagens de Fantasmas , Raios X , Zinco
4.
J Med Imaging (Bellingham) ; 8(3): 035001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34124283

RESUMO

Purpose: A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach: Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results: The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47 mm and angular alignment of 0.35 ± 0.32 deg in phantom studies. The errors remained within 2 mm and 1 deg in cadaver experiments, comparable to the margins of errors provided by surgical trackers (but operating without the need for external tracking). Conclusions: By operating at a fixed fluoroscopic perspective and eliminating the need for encoded C-arm gantry movement, the proposed approach simplifies and expedites the registration of image-guided robotic assistants and can be used with simple, non-calibrated, non-encoded, and non-isocentric C-arm systems to accurately guide a robotic device in a manner that is compatible with the surgical workflow.

5.
J Med Imaging (Bellingham) ; 8(1): 015002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33604409

RESUMO

Purpose: Percutaneous fracture fixation is a challenging procedure that requires accurate interpretation of fluoroscopic images to insert guidewires through narrow bone corridors. We present a guidance system with a video camera mounted onboard the surgical drill to achieve real-time augmentation of the drill trajectory in fluoroscopy and/or CT. Approach: The camera was mounted on the drill and calibrated with respect to the drill axis. Markers identifiable in both video and fluoroscopy are placed about the surgical field and co-registered by feature correspondences. If available, a preoperative CT can also be co-registered by 3D-2D image registration. Real-time guidance is achieved by virtual overlay of the registered drill axis on fluoroscopy or in CT. Performance was evaluated in terms of target registration error (TRE), conformance within clinically relevant pelvic bone corridors, and runtime. Results: Registration of the drill axis to fluoroscopy demonstrated median TRE of 0.9 mm and 2.0 deg when solved with two views (e.g., anteroposterior and lateral) and five markers visible in both video and fluoroscopy-more than sufficient to provide Kirschner wire (K-wire) conformance within common pelvic bone corridors. Registration accuracy was reduced when solved with a single fluoroscopic view ( TRE = 3.4 mm and 2.7 deg) but was also sufficient for K-wire conformance within pelvic bone corridors. Registration was robust with as few as four markers visible within the field of view. Runtime of the initial implementation allowed fluoroscopy overlay and/or 3D CT navigation with freehand manipulation of the drill up to 10 frames / s . Conclusions: A drill-mounted video guidance system was developed to assist with K-wire placement. Overall workflow is compatible with fluoroscopically guided orthopaedic trauma surgery and does not require markers to be placed in preoperative CT. The initial prototype demonstrates accuracy and runtime that could improve the accuracy of K-wire placement, motivating future work for translation to clinical studies.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30971536

RESUMO

AIMS AND OBJECTIVES: (1) To determine the level of awareness among patients, pharmacists and general practitioners about commonly available topical steroids and its combinations.(2) To determine the source of recommendation/prescription of topical steroids and its combination creams.(3) To know and create awareness about the side effects of topical steroids in all the study groups. METHODS: This was a prospective questionnaire-based study where three study groups, namely patients, pharmacists and general practitioners, were included. This study was approved by the institutional ethics committee. after ethical clearance. The patients who used topical steroids for dermatoses where it is an absolute contraindication, as well as those who developed side effects, were included in the study. ThoroughComplete cutaneous examination was done specifically to detect the side effects of steroids. Seminars were conducted and questionnaires were given to both the pharmacists and general practitioners of nearby areas. The questionnaire consisted of questions regarding their prescription and dispensing practices of topical steroids and its combinations. RESULTS: Out of 95 patients seen, the most commonly used steroid molecule was clobetasol propionate 0.05% in 44 (46.3%) patients, the common source of recommendation was general practitioners in 36 (37.8%), the common indication was superficial dermatophytosis in 85 (89%) and the most common adverse effect was recurrence/increase in the extent of the infection in 72 (75.78%) patients. Out of total 44 general practitioners enrolled in the study, 22 (50%) were qualified allopathic medical practitioners and22 (50%) were homeopathic/ayurvedic doctors. Superficial dermatophytosis [19 (43.18%)] was the common dermatosis seen by them. While 29 (65.90%) preferred prescribing topical steroids or its combination, rest of them preferred plain steroid creams. Out of 179 pharmacists, 74 (41.34%) did not have appropriate knowledge of topical steroids, 35 (19.55%) were not aware that steroids are isschedule "H" drugs. Commonest molecule sold over the counterwas clobetasol propionate 0.05% by 74 (41.89%). The limitations of our study were small study group and short duration. CONCLUSION: As dermatologists, it is our responsibility, to correctly educate the society, particularly the non-dermatologist medical fraternity, about ethical and rational use of topical steroids.


Assuntos
Competência Clínica , Uso Indevido de Medicamentos , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Conhecimentos, Atitudes e Prática em Saúde , Administração Tópica , Clínicos Gerais , Humanos , Índia , Farmacêuticos , Estudos Prospectivos , Inquéritos e Questionários
7.
Indian J Sex Transm Dis AIDS ; 41(1): 105-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062994

RESUMO

Epidermodysplasia verruciformis (EDV) may clinically vary from pityriasis versicolor-like macules to wart-like flat papules, psoriasiform red papules, or pigmented keratotic lesions resembling seborrheic keratosis. Sun-exposed areas are commonly affected with genital areas rarely involved. It is associated with more than 30 human papillomaviruses (HPVs). In 90% cases of squamous cell carcinomas, HPV5 and HPV8 is isolated. A case of EDV with plane warts involving the genital area in a 35-year-old male is reported here.

8.
J Med Imaging (Bellingham) ; 7(1): 015501, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32016135

RESUMO

We assessed interventional radiologists' task-based image quality preferences for two- and three-dimensional images obtained with a complementary metal-oxide semiconductor (CMOS) flat-panel detector versus a hydrogenated amorphous silicon (a-Si:H) flat-panel detector. CMOS and a-Si:H detectors were implemented on identical mobile C-arms to acquire radiographic, fluoroscopic, and cone-beam computed tomography (CBCT) images of cadavers undergoing simulated interventional procedures using low- and high-dose settings. Images from both systems were displayed side by side on calibrated, diagnostic-quality displays, and three interventional radiologists evaluated task performance relevant to each image and ranked their preferences based on visibility of pertinent anatomy and interventional devices. Overall, CMOS images were preferred in fluoroscopy ( p = 0.002 ) and CBCT ( p = 0.004 ), at low-dose settings ( p = 0.001 ), and for tasks associated with high levels of spatial resolution [e.g., fine anatomical details ( p = 0.006 ) and assessment of interventional devices ( p = 0.015 )]. No significant difference was found for fluoroscopic imaging tasks emphasizing temporal resolution ( p = 0.072 ), for radiography tasks ( p = 0.825 ), when using high-dose settings ( p = 0.360 ), or tasks involving general anatomy ( p = 0.174 ). The image quality preferences are consistent with reported technical advantages of CMOS regarding finer pixel size and reduced electronic noise.

13.
Med Phys ; 45(12): 5420-5436, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30339271

RESUMO

PURPOSE: Indirect-detection CMOS flat-panel detectors (FPDs) offer fine pixel pitch, fast readout, and low electronic noise in comparison to current a-Si:H FPDs. This work investigates the extent to which these potential advantages affect imaging performance in mobile C-arm fluoroscopy and cone-beam CT (CBCT). METHODS: FPDs based on CMOS (Xineos 3030HS, 0.151 mm pixel pitch) or a-Si:H (PaxScan 3030X, 0.194 mm pixel pitch) sensors were outfitted on equivalent mobile C-arms for fluoroscopy and CBCT. Technical assessment of 2D and 3D imaging performance included measurement of electronic noise, gain, lag, modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ) in fluoroscopy (with entrance air kerma ranging 5-800 nGy per frame) and cone-beam CT (with weighted CT dose index, CTDIw , ranging 0.08-1 mGy). Image quality was evaluated by clinicians in vascular, orthopaedic, and neurological surgery in realistic interventional scenarios with cadaver subjects emulating a variety of 2D and 3D imaging tasks. RESULTS: The CMOS FPD exhibited ~2-3× lower electronic noise and ~7× lower image lag than the a-Si:H FPD. The 2D (projection) DQE was superior for CMOS at ≤50 nGy per frame, especially at high spatial frequencies (~2% improvement at 0.5 mm-1 and ≥50% improvement at 2.3 mm-1 ) and was somewhat inferior at moderate-high doses (up to 18% lower DQE for CMOS at 0.5 mm-1 ). For smooth CBCT reconstructions (low-frequency imaging tasks), CMOS exhibited ~10%-20% higher NEQ (at 0.1-0.5 mm-1 ) at the lowest dose levels (CTDIw ≤0.1 mGy), while the a-Si:H system yielded slightly (~5%) improved NEQ (at 0.1-0.5 lp/mm) at higher dose levels (CTDIw ≥0.6 mGy). For sharp CBCT reconstructions (high-frequency imaging tasks), NEQ was ~32% higher above 1 mm-1 for the CMOS system at mid-high-dose levels and ≥75% higher at the lowest dose levels (CTDIw ≤0.1 mGy). Observer assessment of 2D and 3D cadaver images corroborated the objective metrics with respect to a variety of pertinent interventional imaging tasks. CONCLUSION: Measurements of image noise, spatial resolution, DQE, and NEQ indicate improved low-dose performance for the CMOS-based system, particularly at lower doses and higher spatial frequencies. Assessment in realistic imaging scenarios confirmed improved visibility of fine details in low-dose fluoroscopy and CBCT. The results quantitate the extent to which CMOS detectors improve mobile C-arm imaging performance, especially in 2D and 3D imaging scenarios involving high-resolution tasks and low-dose conditions.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Fluoroscopia/instrumentação , Metais/química , Óxidos/química , Semicondutores , Desenho de Equipamento , Humanos , Imageamento Tridimensional , Razão Sinal-Ruído
14.
Indian J Dermatol ; 62(6): 669-670, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263547
15.
Indian Dermatol Online J ; 8(5): 388-389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979887
16.
Sci Adv ; 1(9): e1500701, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601309

RESUMO

Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities.

17.
Quant Infrared Thermogr J ; 12(2): 173-183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26435756

RESUMO

Continuous infrared imaging revealed transient changes in forearm temperature during arterial occlusion, reperfusion, and recovery in a healthy subject group. Processing the imaging data with the k-means algorithm further revealed reactive vascular sites in the skin with rapid or delayed temperature amplification. The observed temporal and spatial diversity of blood-flow-derived forearm temperature allow consideration of thermal-imaging guided placement of skin sensors to achieve enhanced sensitivity in monitoring of skin hemodynamics.

18.
Ultrasound Med Biol ; 40(4): 714-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530261

RESUMO

The degradation of ultrasonic image quality is typically attributed to aberration and reverberation. Although the sources and impact of aberration are well understood, very little is known about the source and impact of image degradation caused by reverberation. Reverberation is typically associated with multiple reflections at two interfaces along the same propagation path, as with the arterial wall or a metal sphere. However, the reverberation that results in image degradation includes more complex interaction between the propagating wave and the tissue. Simulations of wave propagation in realistic and simplified models of the abdominal wall are used to illustrate the characteristics of coherent and diffuse clutter generated by reverberation. In the realistic models, diffuse reverberation clutter is divided into that originating from the tissue interfaces and that originating from sub-resolution diffuse scatterers. In the simplified models, the magnitude of the reverberation clutter is observed as angle and density of the connective tissue are altered. The results suggest that multi-path scattering from the connective tissue/fat interfaces is a dominant component of reverberation clutter. Diffuse reverberation clutter is maximal when the connective tissue is near normal to the beam direction and increases with the density of connective tissue layers at these large angles. The presence of a thick fascial or fibrous layer at the distal boundary of the abdominal wall magnifies the amount of reverberation clutter. The simulations also illustrate that compression of the abdominal layer, a technique often used to mitigate clutter in overweight and obese patients, increases the decay of reverberation clutter with depth. In addition, rotation of the transducer or steering of the beam with respect to highly reflecting boundaries can reduce coherent clutter and transform it to diffuse clutter, which can be further reduced using coherence-based beamforming techniques. In vivo images of the human bladder illustrate some of the reverberation effects observed in simulation.


Assuntos
Artefatos , Tecido Conjuntivo/diagnóstico por imagem , Fáscia/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Animais , Simulação por Computador , Humanos , Especificidade de Órgãos/fisiologia , Espalhamento de Radiação , Som , Gordura Subcutânea/diagnóstico por imagem , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA