Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SN Appl Sci ; 1(12)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615142

RESUMO

In this work, we present a two-dimensional finite element analysis (FEA) model that describes fundamental intracellular signals of cyclic adenosine monophosphate (cAMP) in a general fashion. The model was subsequently solved numerically and the results were displayed in forms of time-course plots of cAMP concentration at a cellular location or color-filled contour maps of cAMP signal distribution within the cell at specific time points. Basic intracellular cAMP signaling was described in this model so it can be numerically validated by verifying its numerical results against available analytical solutions and against results obtained from other numerical techniques reported in the literature. This is the first important step before the model can be expanded in future work. Model simulations demonstrate that under certain conditions, sustained cAMP concentrations can be formed within endothelial cells (ECs), similar to those observed in rat pulmonary microvascular ECs. Spatial and temporal cAMP dynamic simulations indicated that the proposed FEA model is an effective tool for the study of the kinetics and spatial spread of second messenger signaling and can be expanded to simulate second messenger signals in the pulmonary vasculature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...