Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 172: 105767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096457

RESUMO

The emergence of highly virulent multidrug-resistant P. aeruginosa has become increasingly evident among hospital-acquired infections and has raised the need for alternative therapies. Phage therapy can be one such alternative to antibiotic therapy to combat multidrug-resistant pathogenic bacteria, but this requires the availability of phages with a broad host range. In this study, isolation and molecular characterisation of P. aeruginosa specific phages were carried out. A total of 17 phages isolated showed different spectra of activity and efficiency of lysis against 82 isolates of P. aeruginosa obtained from clinical samples (n = 13), hospital effluent (n = 46) and fish processing plant effluent (n = 23). Antibiotic susceptibility test results revealed multi-drug resistance in 61 of the total 82 isolates. Three new jumbo lytic P. aeruginosa specific broad host range phages were isolated and characterised in this present study belonged to the family Myoviridae (order Caudovirales). The genetic analysis of ɸU5 revealed that phage has a genome size of 282.6 kbp with 373 putative open reading frames (ORFs), and its genetic architecture is similar to phiKZ like jumbo phages infecting P. aeruginosa. The bacteriophages isolated in this study had lytic ability against biofilm-forming and multidrug-resistant P. aeruginosa and could be candidates for further studies towards phage therapy.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Pseudomonas aeruginosa/genética , Fagos de Pseudomonas/genética , Bacteriófagos/genética , Genoma Viral , Antibacterianos/farmacologia
2.
Microb Drug Resist ; 25(1): 23-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30036132

RESUMO

Fluoroquinolones are the drug of choice for most of the infections caused by Escherichia coli, and their indiscriminate use has resulted in increased selective pressure for antibiotic resistance. At present, sequencing is the only reliable and direct technique to detect mutations in the quinolone resistance determining region (QRDR). In this study, a rapid and reliable mismatch amplification mutation assay (MAMA) PCR to detect mutations in the QRDR was evaluated and compared to PCR-restriction fragment length polymorphism (PCR-RFLP). One hundred one clinical isolates of E. coli were subjected to MAMA-PCR and PCR-RFLP to detect QRDR mutations. Overall, 92 (91.08%) resistant isolates harbored a point mutation of S83L in gyrA. Double mutations in gyrA were also detected in 45 (44.55%) isolates. Similarly, 41 (40.59%) isolates possessed a point mutation at parC 80, and 25 (24.75%) isolates possessed a point mutation at parC 84. Additionally, MAMA-PCR-the first of its kind-was also standardized to detect mutations in regions gyrB 447 and parE 416, although no mutations were detected in these regions. The rapid and sensitive MAMA-PCR method evaluated in this study would be helpful in exploring the underlying mechanism of fluoroquinolone resistance to enhance control strategies.


Assuntos
Antibacterianos/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Mutação/genética , Polimorfismo de Fragmento de Restrição/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos , Reação em Cadeia da Polimerase/métodos , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA