Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22 Suppl 7: A1853-61, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607499

RESUMO

We demonstrated photoelectrochemical cells (PECs) with dodecagon faceted AlGaN/n-GaN heterostructure electrode for H(2) generation, where the AlGaN/n-GaN heterostructure has a linear gradient Al composition (LGAC). The separation efficiency of the photo-generated electron-hole pairs in the electrode performs a key function in the H(2) generation efficiency of PEC cells. The linear gradient Al composition, AlGaN, could create more internal field and light absorption because of the linear graded band gap. Therefore, the zero-bias photocurrent density of PEC cells with dodecagon facet LGAC AlGaN/n-GaN heterostructure electrode is around 5.9 times larger than that of dodecagon faceted n-GaN electrode.

2.
Opt Express ; 21 Suppl 6: A991-6, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24514940

RESUMO

Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

3.
Opt Express ; 20 Suppl 5: A678-83, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037534

RESUMO

Hydrogen generation through direct photoelectrolysis of water was studied using photoelectrochemical (PEC) cells made of Mn-doped GaN photoelectrodes. In addition to its absorption of the ultraviolet spectrum, Mn-doped GaN photoelectrodes could absorb photons in the visible spectrum. The photocurrents measured from PEC cells made of Mn-doped GaN were at least one order higher than those measured from PEC cells made of undoped GaN-working electrodes. Under the visible light illumination and a bias voltage below 1.2 V, the Mn-doped GaN photoelectrodes could drive the water splitting reaction for hydrogen generation. However, hydrogen generation could not be achieved under the same condition wherein undoped GaN photoelectrodes were used. According to the results of the spectral responses and transmission spectra obtained from the experimental photoelectrodes, the enhanced photocurrent in the Mn-doped GaN photoelectrodes, compared with the undoped GaN photoelectrodes, was attributable to the Mn-related intermediate band within the band gap of GaN that resulted in further photon absorption.

4.
Opt Express ; 20 Suppl 2: A190-6, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418667

RESUMO

In this study, we demonstrated photoelectrochemical (PEC) hydrogen generation using p-GaN photoelectrodes associated with immersed finger-type indium tin oxide (IF-ITO) ohmic contacts. The IF-ITO/p-GaN photoelectrode scheme exhibits higher photocurrent and gas generation rate compared with p-GaN photoelectrodes without IF-ITO ohmic contacts. In addition, the critical external bias for detectable hydrogen generation can be effectively reduced by the use of IF-ITO ohmic contacts. This finding can be attributed to the greatly uniform distribution of the IF-ITO/p-GaN photoelectrode applied fields over the whole working area. As a result, the collection efficiency of photo-generated holes by electrode contacts is higher than that of p-GaN photoelectrodes without IF-ITO contacts. Microscopy revealed a tiny change on the p-GaN surfaces before and after hydrogen generation. In contrast, photoelectrodes composed of n-GaN have a short lifetime due to n-GaN corrosion during hydrogen generation. Findings of this study indicate that the ITO finger contacts on p-GaN layer is a potential candidate as photoelectrodes for PEC hydrogen generation.

5.
Opt Express ; 19 Suppl 6: A1196-201, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109615

RESUMO

An n-GaN photoelectrochemical (PEC) cell with immersed finger-type indium tin oxide (ITO) ohmic contacts was demonstrated in the present study to enhance the hydrogen generation rate. The finger-type ITO ohmic contacts were covered with SiO2 layers to prevent the PEC cell from generating leakage current. Using a 1M NaCl electrolyte and external biases, the typical photocurrent density and gas generation rate of the n-GaN working electrodes with ITO finger contacts were found to be higher than those with Cr/Au finger contacts. The enhancement in photocurrent density or gas generation rate can be attributed to the transparent ITO contacts which allowed the introduction of relatively more photons into the GaN layer. No significant corrosion was observed in the ITO layer after the PEC process compared with the Cr/Au finger contacts which were significantly peeled from the GaN layer. These results indicate that the use of n-GaN working electrodes with finger-type ITO ohmic contacts is a promising approach for PEC cells.

6.
Opt Express ; 19(13): 12658-63, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716508

RESUMO

In this study, gallium nitride (GaN)-based metal-insulator-semiconductor (MIS) ultraviolet (UV) photodetectors (PDs) with a gallium oxide (GaO(x)) gate layer formed by alternating current bias-assisted photoelectrochemical oxidation of n-GaN are presented. By introducing the GaO(x) gate layer to the GaN MIS UV PDs, the leakage current is reduced and a much larger UV-to-visible rejection ratio (R(UV/vis)) of spectral responsivity is achieved. In addition, a bias-dependent spectral response results in marked increase of the R(UV/vis) with bias voltage up to ~10(5). The bias-dependent responsivity suggests the possible existence of internal gain in of the GaN MIS PDs.


Assuntos
Gálio/química , Dispositivos Ópticos , Óptica e Fotônica/métodos , Semicondutores , Raios Ultravioleta , Eletrônica , Óptica e Fotônica/instrumentação , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...