Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38958023

RESUMO

This study employs cold-wall chemical vapor deposition to achieve the growth of MoTe2thin films on 4-inch sapphire substrates. A two-step growth process is utilized, incorporating MoO3and Te powder sources under low-pressure conditions to synthesize MoTe2. The resultant MoTe2thin films exhibit a dominant 1T' phase, as evidenced by a prominent Raman peak at 161 cm-1. This preferential 1T' phase formation is attributed to controlled manipulation of the second-step growth temperature, essentially the reaction stage between Te vapor and the pre-deposited MoOx layer. Under these optimized growth conditions, the thickness of the continuous 1T'-MoTe2films can be precisely tailored within the range of 3.5 - 5.7 nm (equivalent to 5 - 8 layers), as determined by atomic force microscopy depth profiling. Hall-effect measurements unveil a typical hole concentration and mobility of 0.2 cm2/V-s and 7.9 × 1021cm-3, respectively, for the synthesized few-layered 1T'-MoTe2 films. Furthermore, Ti/Al bilayer metal contacts deposited on the few-layered 1T'-MoTe2films exhibit low specific contact resistances of approximately 1.0 × 10-4Ω-cm2estimated by the transfer length model. This finding suggests a viable approach for achieving low ohmic contact resistance using the 1T'-MoTe2intermediate layer between metallic electrodes and two-dimensional semiconductors.

2.
J Mater Chem B ; 12(26): 6305-6327, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912548

RESUMO

Cardiovascular diseases (CVDs) stand as a predominant global health concern, introducing vast socioeconomic challenges. In addressing this pressing dilemma, enhanced diagnostic modalities have become paramount, positioning electrochemical biosensing as an instrumental innovation. This comprehensive review navigates the multifaceted terrain of CVDs, elucidating their defining characteristics, clinical manifestations, therapeutic avenues, and intrinsic risk factors. Notable emphasis is placed on pivotal diagnostic tools, spotlighting cardiac biomarkers distinguished by their unmatched clinical precision in terms of relevance, sensitivity, and specificity. Highlighting the broader repercussions of CVDs, there emerges an accentuated need for refined diagnostic strategies. Such an exploration segues into a profound analysis of electrochemical biosensing, encapsulating its foundational principles, diverse classifications, and integral components, notably recognition molecules and transducers. Contemporary advancements in biosensing technologies are brought to the fore, emphasizing pioneering electrode architectures, cutting-edge signal amplification processes, and the synergistic integration of biosensors with microfluidic platforms. At the core of this discourse is the demonstrated proficiency of biosensors in detecting cardiovascular anomalies, underpinned by empirical case studies, systematic evaluations, and clinical insights. As the narrative unfolds, it addresses an array of inherent challenges, spanning intricate technicalities, real-world applicability constraints, and regulatory considerations, finally, by casting an anticipatory gaze upon the future of electrochemical biosensing, heralding a new era of diagnostic tools primed to revolutionize cardiovascular healthcare.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Doenças Cardiovasculares , Técnicas Eletroquímicas , Humanos , Doenças Cardiovasculares/diagnóstico , Biomarcadores/análise , Biomarcadores/sangue
3.
Angew Chem Int Ed Engl ; 63(1): e202311806, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37773568

RESUMO

In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.

4.
Photoacoustics ; 30: 100477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063309

RESUMO

Acoustical behavior of semiconducting transition metal dichalcogenides determines the heat transfer pathway, and thus plays a crucial role in the electronics and optoelectronics design. In this research, van der Waals heterojunctions (vdWHs) consisting of transferred monolayer and bi-layer MoS2 on GaN substrate were studied. We observed an asymmetric bipolar acoustic strain wave with ∼5 ps duration, which describes the surface of substrate undergoing strong compressive deformation after weak tensile deformation in the out-of-plane direction. We developed a theory to explain the mechanisms responsible for the observed strain waveform in the vdWHs elastic system, and obtained the critical parameters of the carrier dynamics by temporal fitting. Our results not only report a coherent acoustic phonon generated in the vdWHs, which will complement our understanding of the thermal transfer at the 2D/substrate interface, but also provide information about the intrinsic properties in the vdWHs, which would benefit the design of the 2D-based devices in the future.

5.
RSC Adv ; 13(8): 5437-5443, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36793296

RESUMO

The growth conditions of the AlGaN barrier in AlGaN/AlGaN deep ultra-violet (DUV) multiple quantum wells (MQWs) have crucial influences on the light output power of DUV light-emitting diodes (LEDs). The reduction of the AlGaN barrier growth rate improved the qualities of AlGaN/AlGaN MQWs, such as surface roughness and defects. The light output power enhancement could reach 83% when the AlGaN barrier growth rate was reduced from 900 nm h-1 to 200 nm h-1. In addition to the light output power enhancement, lowering the AlGaN barrier growth rate altered the far-field emission patterns of the DUV LEDs and increased the degree of polarization in the DUV LEDs. The enhanced transverse electric polarized emission indicates that the strain in AlGaN/AlGaN MQWs was modified by lowering the AlGaN barrier growth rate.

6.
Inorg Chem ; 61(41): 16370-16379, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36184926

RESUMO

Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 µM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.


Assuntos
Arsênio , Nanopartículas , Roxarsona , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Praseodímio , Reprodutibilidade dos Testes , Roxarsona/análise , Roxarsona/química , Vanadatos , Água
7.
ACS Omega ; 7(17): 15027-15036, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557702

RESUMO

AlGaN and GaN sidewalls were turned into Al x Ga2-x O3 and Ga2O3, respectively, by thermal oxidation to improve the optoelectrical characteristics of deep ultraviolet (DUV) light-emitting diodes (LEDs). The thermally oxidized Ga2O3 is a single crystal with nanosized voids homogenously distributed inside the layer. Two oxidized Al x Ga2-x O3 layers were observed on the sidewall of the AlGaN layer in transmission electron microscopy images. The first oxidized Al x Ga2-x O3 layer is a single crystal, while the second oxidized Al x Ga2-xO3 layer is a single crystal with numerous nanosized voids inside. The composition of Al in the first oxidized Al x Ga2-x O3 layer is higher than that in the second one. The thermal oxidation at high temperature degrades the quality of the p-GaN layer and increases the forward voltage from 8.18 to 11.36 V. The thermally oxidized Al x Ga2-x O3 sidewall greatly enhances the light extraction efficiency of the lateral light of the DUV LEDs by combined mechanisms of holey structure, graded refractive index, high transparency, and tensile stress. Consequently, the light output power of the DUV LEDs increases from 0.69 to 0.88 mW by introducing a 420 nm thick Al x Ga2-x O3 sidewall oxidized at 900 °C, in which the enhancement of light output power can reach 27.5%.

8.
Membranes (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065275

RESUMO

Zirconium-doped MgxZn1-xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm-3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1-xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.

9.
Opt Express ; 28(23): 34045-34053, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182882

RESUMO

Launching ultrashort femtosecond photoacoustic pulses with multi-terahertz bandwidth will find broad applications from fundamental acoustics in 2D materials and THz-acoustic and phonon spectroscopy to nondestructive detection in opaque materials with a sub-nanometer resolution. Here we report the generation of ultra-short 344 fs photoacoustic pulses with a 2.1 THz bandwidth from interfacial two-dimensional electron gas using optical femtosecond excitation. A comparison with simulation supports the dominant contribution of hot electron pressure and the ultrafast electron relaxation to produce pulsewidth shorter than the acoustic transit time across the electron wavefunction. Our simulation further indicates the possibility to generate <200 fs photoacoustic pulse.

10.
Opt Lett ; 45(17): 4839-4842, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870871

RESUMO

In this work, we demonstrate a novel high-power vertical-cavity surface-emitting laser (VCSEL) array with highly single-mode (SM) and single-polarized output performance without significantly increasing the intra-cavity loss and threshold current (Ith). By combining a low-loss zinc-diffusion aperture with an electroplated copper substrate, we can obtain a highly SM output (side mode suppression ratio >50dB) with a very narrow divergence angle (1/e2:∼10∘) under high output power (3.1 W; 1% duty cycle) and sustain a single polarization state, with a polarization suppression ratio of around 9 dB, under the full range of bias currents. Compared to the reference device without the copper substrate, the demonstrated array can not only switch the output optical spectra from quasi-SM to highly SM but also maintain a close threshold current value (Ith: 0.8 versus 0.7 mA per unit device) and slope efficiency. The enhancement in fundamental mode selectivity of our VCSEL structure can be attributed to the single-polarized lasing mode induced by tensile strain, which is caused by the electroplated copper substrate, as verified by the double-crystal x-ray measurement results.

11.
Opt Express ; 28(4): 4674-4685, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121700

RESUMO

This study demonstrates that selective-area Si implantation performed on the GaN templates instead of conventional dielectric layers, such as SiO2 or SiNx, serves as the mask layer for the epitaxial lateral overgrowth (ELOG) process. Although the substantial mask layer is absent on the templates, selective growth initially occurs on the implantation-free area and then evolves a lateral overgrowth on the Si-implanted area during the regrowth process. This selective growth is attributed to that the crystal structure of the Si-implanted area subjected to the high doses of ion bombardment produces an amorphous surface layer, thereby leading to a lattice mismatch to the regrown GaN layer. Microstructural analyses reveal that the density of the threading dislocations above the Si-implanted regions is markedly lower than the GaN layer in the implantation-free regions. Consequentially, UV LEDs fabricated on the Si-implanted GaN templates exhibit relatively higher light output and lower leakage current compared with those of LEDs grown on ELOG-free GaN templates.

12.
Sci Rep ; 9(1): 3243, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824803

RESUMO

In this study, the blue light-emitting diode (LED) structures based on gallium nitride (GaN) were presented. Each structure possessed a surface GaN p-n junction, which was formed through selective area regrowth on an InGaN/GaN multiple quantum well (MQW) structure and served as the carrier injector. The LEDs that showed efficient hole injection and current spreading were configured to form a p-type GaN layer between the MQW and regrown n-type GaN top layer. These LEDs exhibited higher luminous efficiency and lower operation voltage than the LEDs with regrown p-type GaN top layers. The LEDs with n-type GaN top layers emitted single-peak spectra at approximately 450 nm under a forward bias. The UV peak at 365 nm (i.e., the GaN band-edge emission) was absent because the regrown surface GaN p-n junctions behaved as carrier injectors rather than photon injectors. In other words, the single-peak blue emission was not generated by the optical pumping of UV light emitted from the surface p-n GaN homojunction.

13.
Nanoscale ; 11(8): 3534-3545, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30569051

RESUMO

The application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin. It is expected that the experimental demonstration of the curvature-tunable random laser can provide a new route to develop disorder-based optoelectronic devices.

14.
Micromachines (Basel) ; 9(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486267

RESUMO

Micron-sized patterned sapphire substrates (PSS) are used to improve the performance of GaN-based light-emitting diodes (LEDs). However, the growth of GaN is initiated not only from the bottom c-plane but also from the sidewall of the micron-sized patterns. Therefore, the coalescence of these GaN crystals creates irregular voids. In this study, two kinds of nucleation layers (NL)-ex-situ AlN NL and in-situ GaN NL-were used, and the growth of sidewall GaN was successfully suppressed in both systems by modifying the micron-sized PSS surface.

15.
Sci Rep ; 8(1): 8641, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872117

RESUMO

The effect of Mn concentration on the optical properties of Mn-doped layers grown by metalorganic vapor phase epitaxy is investigated. The Mn-doped GaN layers exhibite a typical transmittance spectrum with a distinct dip around 820 nm which is attributed to the transition of electrons between the edge of valence band and the Mn-related states within the bandgap. In addition, electroluminescence (EL) spectra obtained from the bipolar devices with Mn-doped GaN active layer also show that considerable Mn-related energy states existed in the bandgap. The position of the Mn-related energy states in the GaN is first evaluated via EL spectra. In addition to the absorption of band edge, the Mn-related energy states behaving like an intermediate band cause an additional sub-band gap absorption. Consequently, the fabricated GaN-based solar cells using Mn-doed GaN as the absorption layer exhibit photocurrent higher than the control devices without Mn doping. Under one-sun air mass 1.5 G testing condition, the short-circuit current of the Mn-doed GaN solar cells can be enhanced by a magnitude of 10 times compared with the cells without Mn doping.

16.
Opt Express ; 25(16): A777-A784, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041045

RESUMO

Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.

17.
J Phys Chem Lett ; 8(21): 5430-5437, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058902

RESUMO

Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

18.
Sci Rep ; 7(1): 5788, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724899

RESUMO

GaN-based materials are widely used for light emission devices, but the intrinsic property of wide bandgap makes it improper for photovoltaic applications. Recently, manganese was doped into GaN for absorption of visible light, and the conversion efficiency of GaN-based solar cells has been greatly improved. We conducted transient optical measurements to study the carrier dynamics of Mn-doped GaN. The lifetime of carriers in the Mn-related intermediate bands (at 1.5 eV above the valence band edge) is around 1.7 ns. The carrier relaxation within the Mn-induced bandtail states was on the order of a few hundred picoseconds. The relaxation times of different states are important parameters for optimization of conversion efficiency for intermediate-band solar cells.

19.
Sci Rep ; 6: 28577, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346494

RESUMO

GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

20.
Nanoscale ; 8(8): 4463-74, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26852753

RESUMO

ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...