Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(21): 32900-32909, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809112

RESUMO

We present ab initio simulations of optimal control of high-order-harmonic generation spectra that enable the synthesis of a circularly polarized 53-attosecond pulse in a single Helium atom response. The Bayesian optimization is used to achieve control of a two-color polarization gating laser waveform such that a series of harmonics in the plateau region are phase-matched, which can be used for attosecond pulse synthesis. To find the underlying mechanisms for generating these harmonics, we perform a wavelet analysis for the induced dipole moment in acceleration form, and compare the time-energy representation with the quantum paths extracted from the semiclassical calculation. We found that these coherent harmonics are excited along the short trajectories. The proposed method has the potential to migrate to laboratories for generation of isolated circularly polarized ultrashort attosecond pulses.

2.
J Phys Chem Lett ; 9(24): 7032-7039, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30489084

RESUMO

We investigate resonance energy transfer (RET) between a donor-acceptor pair above a gold surface (including bulk and thin-film systems) and explore the distance/frequency dependence of RET enhancements using the theory we developed previously. The mechanism of RET above a gold surface can be attributed to the effects of mirror dipoles, surface plasmon polaritons (SPPs), and retardation. To clarify these effects on RET, we analyze the enhancements of RET by the mirror method, the decomposition of s- and p-polarization, and the SPP dispersion of charge-symmetric and charge-antisymmetric modes. We find a characteristic distance (approximately 1/10 of the wavelength) that can be used to classify the dominant effect on RET. Moreover, the characteristic distance can be shortened by narrowing the thickness of the thin-film systems, indicating that SPPs can enhance the rate of RET at a short range. The charge-symmetric and charge-antisymmetric modes of the thin films also allow us to engineer the maximum RET enhancement. We hope that our analysis inspires further investigation into the mechanism of RET coupled with SPPs and its applications.

3.
Sci Rep ; 6: 32763, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27596056

RESUMO

Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.

4.
Opt Express ; 23(23): 30459-82, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698525

RESUMO

Time-frequency (TF) analysis is a powerful tool for exploring ultrafast dynamics in atoms and molecules. While some TF methods have demonstrated their usefulness and potential in several quantum systems, a systematic comparison among them is still lacking. To this end, we compare a series of classical and contemporary TF methods by taking hydrogen atom in a strong laser field as a benchmark. In addition, several TF methods such as Cohen class distribution other than the Wigner-Ville distribution, reassignment methods, and the empirical mode decomposition method are first introduced to exploration of ultrafast dynamics. Among these TF methods, the synchrosqueezing transform successfully illustrates the physical mechanisms in the multiphoton ionization regime and in the tunneling ionization regime. Furthermore, an empirical procedure to analyze an unknown complicated quantum system is provided, suggesting the versatility of TF analysis as a new viable venue for exploring quantum dynamics.

5.
Nat Commun ; 6: 7178, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25990452

RESUMO

Near- and below-threshold harmonic generation provides a potential approach to generate vacuum-ultraviolet frequency comb. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of caesium (Cs) atoms in an intense 3,600-nm mid-infrared laser field. Combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, the roles of multiphoton and multiple rescattering trajectories on the near- and below-threshold harmonic generation processes are clarified. We find that the multiphoton-dominated trajectories only involve the electrons scattered off the higher part of the combined atom-field potential followed by the absorption of many photons in near- and below-threshold regime. Furthermore, only the near-resonant below-threshold harmonic is exclusive to exhibit phase locked features. Our results shed light on the dynamic origin of the near- and below-threshold harmonic generation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-21989871

RESUMO

Intravascular photoacoustic (IVPA) imaging is a technique for visualizing atherosclerotic plaques with differential composition. Unlike conventional photoacoustic tomography scanning, where the scanning device rotates around the subject, the scanning aperture in IVPA imaging is enclosed within the imaged object. The display of the intravascular structure is typically obtained by converting detected photoacoustic waves into Cartesian coordinates, which can produce images with severe artifacts. Because the acquired data are highly limited, there does not exist a stable reconstruction algorithm for such imaging geometry. The purpose of this work was to apply image reconstruction concepts to explore the feasibility and efficacy of image reconstruction algorithms in IVPA imaging using traditional analytical formulas, such as a filtered back-projection (FBP) and the lambda-tomography method. Although the closed-form formulas are not exact for the IVPA system, a general picture of and interface information about objects are provided. To improve the quality of the reconstructed image, the iterative expectation maximization and penalized least-squares methods were adopted to minimize the difference between the measured signals and those generated by a reconstructed image. In this work, we considered both the ideal point detector and the acoustic transducers with finite- size aperture. The transducer effects including the spatial response of aperture and acoustoelectrical impulse responses were incorporated in the system matrix to reduce the aroused distortion in the IVPA reconstruction. Computer simulations and experiments were carried out to validate the methods. The applicability and the limitation of the reconstruction method were also discussed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Ultrassonografia de Intervenção/instrumentação , Algoritmos , Artefatos , Simulação por Computador , Cabelo/química , Cabelo/diagnóstico por imagem , Humanos , Análise dos Mínimos Quadrados , Modelos Biológicos , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Transdutores
7.
Artigo em Inglês | MEDLINE | ID: mdl-19473928

RESUMO

Most physical models used to evaluate thermally induced photoacoustic waves in biomedical applications are approximations based on assumptions necessary to obtain analytical results, such as thermal and stress confinements. In contrast, using numerical methods to solve the general photoacoustic wave equations gives detailed information on the wave phenomenon without requiring as many assumptions to be made. The photoacoustic wave generated by thermal expansion is characterized by the heat conduction theorem and the state, continuity, and Navier-Stokes equations. This study developed a numerical solution in axis-symmetric cylindrical coordinates using a pseudospectral time-domain scheme. The method is efficient for large-scale simulations since it requires only 2 grid points per minimum wavelength, in contrast to conventional methods such as the finite-difference time-domain method requiring at least 10-20 grid points. The numerical techniques included Berenger's perfectly matched layers for free wave simulations, and a linear-perturbation analytical solution was used to validate the simulation results. The numerical results obtained using 4 grid points per minimum wavelength in the simulation domain agreed with the theoretical estimates to within an absolute difference error of 3.87 x 10(-2) for a detection distance of 3.1 mm.

8.
Opt Express ; 16(25): 20215-26, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19065160

RESUMO

Contrast in photoacoustic imaging is primarily determined by optical absorption. This paper proposes a subband imaging method to further enhance the image contrast. The method is based on media with different absorptions generating acoustic waves with different frequency contents. Generally, assuming all other conditions remain the same, a high-absorption medium generates acoustic waves with higher frequency components, and hence the imaging contrast can be enhanced by appropriate selection of the spectral subbands. This study employed both finite-difference, time-domain-based simulations and phantom imaging. The numerical results show that the peak frequencies of the signals for objects with absorption coefficients of 1 and 100 cmM(-1) were 2.4 and 7.8 MHz, respectively. Imaging an agar-based phantom further demonstrated that the contrast between two objects with absorption coefficients of 5.01 and 41.75 cm(-1) can be improved by 4-10 dB when the frequency band was changed from 0-7 to 7-14 MHz. Finally, a method to further enhance the contrast based on optimal weighting is also presented. The proposed method is of particular interest in photoacoustic molecular imaging.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Nefelometria e Turbidimetria/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Nefelometria e Turbidimetria/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Ultrason Imaging ; 30(4): 217-27, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19507675

RESUMO

Combining photoacoustic and ultrasonic imaging allows both optical and acoustic properties to be displayed simultaneously. In this paper, we describe a dual-band transducer for implementing such a multimodality imaging setup. The transducer exhibits two frequency bands so that it matches the frequency of interest in both imaging methods. An optical fiber is included in the center so that it is inherently coregistered. The transducer was fabricated from lithium niobate and comprises two concentric rings whose center frequencies are 4.9 MHz and 14.8 MHz. Pulse-echo measurements and phantom imaging were performed to demonstrate its performance characteristics.


Assuntos
Aumento da Imagem/instrumentação , Transdutores , Ultrassonografia/instrumentação , Desenho de Equipamento , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Luz , Fibras Ópticas , Imagens de Fantasmas , Ondas de Rádio , Ultrassonografia/métodos
10.
J Acoust Soc Am ; 124(6): 3471-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19206776

RESUMO

This study developed a numerical solution of the general photoacoustic generation equations involving the heat conduction theory and the state, continuity, and Navier-Stokes equations in 2.5D axisymmetric cylindrical coordinates using a finite-difference time-domain scheme. The numerical techniques included staggered grids and Berenger's perfectly matched layers (PMLs), and linear-perturbation analytical solutions were used to validate the simulation results. The numerical results at different detection angles and durations of laser pulses agreed with the theoretical estimates to within an error of 2% in the absolute differences. It was also demonstrated that the simulator can be used to develop advanced photoacoustic imaging methods. The performance of Berenger's PMLs was also assessed by comparisons with the traditional first-order Mur's boundary condition. At the edges of the simulation domain, a ten-layer PML medium with polynomial attenuation coefficient grading from 0 to 5 x 10(6) m(3)/kg s was designed to reduce the reflection to as low as -60 and -32 dB in the axial and radial directions, respectively. The reflections at the axial and radial boundaries were 32 and 7 dB lower, respectively, for the ten-layer PML absorbing layer than for the first-order Mur's boundary condition.


Assuntos
Acústica , Simulação por Computador , Lasers , Modelos Teóricos , Análise Numérica Assistida por Computador , Som , Movimento (Física) , Pressão , Reprodutibilidade dos Testes , Temperatura , Condutividade Térmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...