Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(42): 5518-5521, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38693880

RESUMO

A van der Waals telluride, NbFeTe2, has been synthesized using chemical vapor transport reactions. The optimized synthetic conditions yield high-quality single crystals with a novel monoclinic crystal structure. Monoclinic NbFeTe2 demonstrates a (100) cleavage plane, bulk ferromagnetism below 87 K, and a metallic ground state-the necessary prerequisites for needed spintronics technologies.

2.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731517

RESUMO

Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the synthesis and crystal structures of the Mn2Ga2S5 and Mn2Al2Se5 layered chalcogenides. For Mn2Ga2S5, we report magnetic properties, as well as the exfoliation of nanofilms and nanoscrolls. The synthesis of both polycrystalline phases and single crystals is described, and their chemical stability in air is studied. Crystal structures are probed via powder X-ray diffraction and high-resolution transmission electron microscopy. The new compound Mn2Al2Se5 is isomorphous with Mn2Ga2S5 crystallizing in the Mg2Al2Se5 structure type. The crystal structure is built by the ABCBCA sequence of hexagonal close-packing layers of chalcogen atoms, where Mn2+ and Al3+/Ga3+ species preferentially occupy octahedral and tetrahedral voids, respectively. Mn2Ga2S5 exhibits an antiferromagnetic-like transition at 13 K accompanied by the ferromagnetic hysteresis of magnetization. Significant frustration of the magnetic system may yield spin-glass behavior at low temperatures. The exfoliation of Mn2Ga2S5 layers was performed in a non-polar solvent. Nanolayers and nanoscrolls were observed using high-resolution transmission electron microscopy. Fragments of micron-sized crystallites with a thickness of 70-100 nanometers were deposited on a glass surface, as evidenced by atomic force microscopy.

3.
Dalton Trans ; 53(4): 1506-1516, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38131653

RESUMO

Single crystals of two new intermetallic phases Sm2Mn1-xGa6-yGey (x = 0.1-0.3, y = 0.6-1.0) and Sm4MnGa12-yGey (y = 3.0-3.5) were grown using a self-flux technique. According to single crystal X-ray diffraction data, Sm4MnGa12-yGey is characterised by the Y4PdGa12 structure type (a ∼ 8.65 Å; Im3̄m), while Sm2Mn1-xGa6-yGey formally adopts the K2PtCl6 structure type (a ∼ 8.71 Å; Fm3̄m). The general features of both compounds with rather similar crystal structures are represented by the alternation of empty and Mn-filled p-element octahedra, the order of which is determined by the Mn concentration. The diffraction data for Sm2Mn1-xGa6-yGey reveal a large concentration of Mn vacancies (x ∼ 0.3), which affects adjacent Ga/Ge atoms leading to their shift towards the vacancy. Both compounds demonstrate two ferromagnetic-like transitions and the presence of two interacting Mn and Sm magnetic sublattices. The Mn sublattice orders at TC1 of 143 K and 318 K, while the Sm one orders at lower temperatures at TC2 of 50 K and 280 K for Sm4MnGa8.6Ge3.4 and Sm2Mn0.74Ga5.1Ge0.9, respectively. The increase in Mn content not only increases the ordering temperatures, but also dramatically decreases the coercivity µ0HC from 230 mT to just 6.5 mT at 2 K. Despite the presence of two magnetically active sublattices in Sm2Mn0.74Ga5.1Ge0.9, the magnetic entropy change is quite low and only reaches 0.3 J kg-1 K-1 at T = 300 K and µ0H = 5 T, while the estimated relative cooling power (RCP) is about 36 J kg-1 at 5 T.

4.
Inorg Chem ; 62(33): 13348-13361, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37549233

RESUMO

Single crystals of RMnxGa3 and their new quaternary derivatives R4Mn1-xGa12-yGey (R = Tb, Dy, x ≤ 0.25, y ≈ 1.0-3.3) were grown from a Ga flux. The compounds are derivatives of cubic RGa3 phases, with Mn atoms filling the Ga6 voids. RMnxGa3 formally adopts a cubic ABO3 perovskite structure, in which the presence of Mn atoms results in a shift of the neighboring Ga atoms from their ideal position. A partial substitution of Ga by Ge leads to a higher Mn content, resulting in structural ordering of the latter and the formation of the superstructure phases R4Mn1-xGa12-yGey, which can be formally described in the Y4PdGa12 structure type. The presence of Mn vacancies, which was observed for R = Tb, and Ga/Ge mixing lead to a noticeable deviation from the idealized structure. The compounds contain two magnetic sublattices: the R sublattice, which orders antiferromagnetically near 20 K, and the Mn sublattice, which orders ferromagnetically at TC = 125-225 K with the Ge doping resulting in higher TC. The two sublattices are not independent, as the Mn sublattice induces partial ferromagnetic ordering of the rare earth atoms below TC, at least for the Ge-doped phases. Near TN, both magnetic susceptibility and heat capacity reveal complex behavior, indicating changes in magnetic structures below TN.

5.
Dalton Trans ; 52(31): 10657-10661, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37482916

RESUMO

Re4-xMnxGe7-δ (x = 0.9-1.5, δ = 0.42-0.44) is a new member of the Nowotny chimney-ladder family of compounds and features an incommensurate composite structure of transition element T (Re and Mn) and Ge substructures. Our theoretical calculations indicate metallic conductivity and ferromagnetic ordering, the latter being experimentally observed below 157 K.

6.
Inorg Chem ; 62(19): 7557-7565, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130007

RESUMO

Layered van der Waals (vdW) chalcogenides of 3d transition metals are a rich source of two-dimensional (2D) nanomaterials, in which atomically thin layers with the terminating chalcogen atoms exhibit promising functionality for novel spintronic devices. Here, we report on the synthesis, crystal growth, and magnetic properties of FeAl2Se4, MnAl2S4, and MnAl2Se4 ternary chalcogenides. Crystal structures are probed by powder X-ray diffraction, Mössbauer spectroscopy, and high-resolution transmission electron microscopy. We improve the structural models of FeAl2Se4 and MnAl2S4 and show that isostructural MnAl2S4 and MnAl2Se4 crystallize in the centrosymmetric R3̅̅m space group. In the crystal structure, transition metal and Al atoms mutually occupy the octahedral and tetrahedral voids of four close-packing chalcogen layers terminated by vdW gaps. The transition-metal atoms form a triangular arrangement inside the close-packing layers. As a result, FeAl2Se4 and MnAl2S4 show no long-range magnetic order in the studied temperature range. In the paramagnetic state, Fe and Mn possess effective magnetic moments of 4.99(2) and 5.405(6) µB, respectively. Furthermore, FeAl2Se4 enters a frozen spin-disordered state below 12 K.

7.
Dalton Trans ; 52(17): 5534-5544, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009650

RESUMO

Transition metal-based two-dimensional nanomaterials with competing magnetic states are at the cutting edge of spintronic and low-power memory devices. In this paper, we present a Fe-rich NbFe1+xTe3 layered telluride (x ≈ 0.5), which shows an interplay of spin-glass and antiferromagnetic states below the Néel temperature of 179 K. The compound has a layered crystal structure, where the NbFeTe3 layers are terminated by the Te atoms and van der Waals gaps. Bulk single crystals grown by chemical vapor transport reactions possess the (1̄01) cleavage plane suitable for the exfoliation of two-dimensional nanomaterials. Combination of high-resolution transmission electron microscopy and powder X-ray diffraction reveals the zigzag ladders of Fe atoms inside the structural layers, as well as complementary zigzag chains of the partially occupied Fe positions in the interstitial region. Fe atoms carry large effective magnetic moment of 4.85(3)µB per atom in the paramagnetic state yielding intriguing magnetic properties of NbFe1+xTe3. They include frozen spin-glass state at low temperatures and spin-flop transition in high magnetic fields indicating promising flexibility of the magnetic system and its potential control by magnetic field or gate tuning in the spintronic devices and heterostructures.

8.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770388

RESUMO

Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The reducing power of gallium was applied to influence the optoelectronic properties of the Cs2SnI6 phase via partial reduction of tin(IV) and, very likely, substitute partially Sn4+ by Ga3+. The reduction of Sn4+ to Sn2+ in the Cs2SnI6 phase contributes to the switching from p-type conductivity to n-type, thereby improving the total concentration and mobility of negative-charge carriers. The phase composition of the samples obtained was studied by X-ray diffraction (XRD) and 119Sn Mössbauer spectroscopy (MS). It is shown that the excess of metal gallium in a reaction melt leads to the two-phase product containing Cs2SnI6 with Sn4+ and ß-CsSnI3 with Sn2+. UV-visible absorption spectroscopy shows a high absorption coefficient of the composite material.

9.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768523

RESUMO

In searching for a tool for optimizing the band gap of a hybrid compound capable of serving as a light-harvesting material in lead-free photovoltaics, we synthesized a new polyiodoantimonate (HpipeH2)2[Sb2I10](I2) and analyzed its crystal and electronic structure by application of X-ray crystal structure analysis, Raman and diffuse reflectance spectroscopies, and quantum chemical calculations. It was demonstrated that I2 molecules link Sb2I10 edge-sharing octahedra into zig-zag chains, whereas the organic cations link inorganic anionic chains into a 3D structure featuring a complex pattern of covalent bonds and non-covalent interactions. Overall, these features provide the background for forming the electronic structure with a narrow band gap of 1.41 eV, therefore being a versatile tool for optimizing the band gap of a potential light-harvesting hybrid compound.


Assuntos
Eletrônica , Polímeros , Ânions , Sorogrupo
10.
Phys Chem Chem Phys ; 25(6): 4862-4871, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692371

RESUMO

The 1111 compounds with an alternating sequence of fluorite and antifluorite layers serve as structural hosts for the vast family of Fe-based superconductors. Here, we use neutron powder diffraction and density-functional-theory (DFT) band-structure calculations to study magnetic order of Eu2+ in the [EuF]+ fluorite layers depending on the nature of the [TAs]- antifluorite layer that can be non-magnetic semiconducting (T = Zn), magnetic semiconducting (T = Mn), or magnetic metallic (T = Fe). Antiferromagnetic transitions at TN ∼ 2.4-3 K due to an ordering of the Eu2+ magnetic moments were confirmed in all three EuTAsF compounds. Whereas in EuTAsF (T = Zn and Mn), the commensurate k1 = (½ ½ 0) stripe order pattern with magnetic moments within the a-b plane is observed, the order in EuFeAsF is incommensurate with k = (0 0.961(1) ½) and represents a cycloid of Eu2+ magnetic moments confined within the bc-plane. Additionally, the Mn2+ sublattice in EuMnAsF features a robust G-type antiferromagnetic order that persists at least up to room temperature, with magnetic moments along the c-direction. Although DFT calculations suggest stripe antiferromagnetic order in the Fe-sublattice of EuFeAsF as the ground state, neutron diffraction reveals no evidence of long-range magnetic order associated with Fe. We show that the frustrating interplane interaction J3 between the adjacent [EuF]+ layers is comparable with in-plane J1-J2 interactions already in the case of semiconducting fluorite layers [TAs]- (T = Zn and Mn) and becomes dominant in the case of the metallic [FeAs]- ones. The latter, along with a slight orthorhombic distortion, is proposed to be the origin of the incommensurate magnetic structure observed in EuFeAsF.

11.
Inorg Chem ; 61(24): 9224-9230, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658443

RESUMO

Transition metal-based layered compounds with van der Waals gaps between the structural layers are a rich source of magnetic materials for spintronic applications. Bulk crystals can be cleaved, providing high-quality two-dimensional nanomaterials, which are promising for the manipulation of spins in spintronic devices and low power quantum logic interfaces. The layered van der Waals telluride Fe5AsTe2 can be synthesized by the high-temperature reaction of elements. In the crystal structure, Fe-rich structural layers with the composition of Fe4.58(4)AsTe2 are separated by the van der Waals gaps with no atoms in the interstitial region. Crystal growth employing chemical vapor transport reactions yields bulk cleavable crystals, which exhibit weak inherent ferromagnetism below the Curie temperature of TC = 48 K. In the ordered state, the magnetization shows a dual-slope behavior in low magnetic fields, indicating the compensated or canted nature of magnetism. Magnetic susceptibility and magnetization measurements reveal perpendicular magnetic anisotropy. The large Rhodes-Wohlfarth ratio of 4.6 indicates the itinerant nature of ferromagnetism in Fe5AsTe2.

12.
Dalton Trans ; 51(21): 8454-8460, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593508

RESUMO

Transition metal-based layered compounds with van der Waals gaps between the adjacent layers are a source of two-dimensional (2D) nanomaterials with nontrivial transport and magnetic properties. 2D ferromagnets, both metals and semiconductors, can be leveraged to produce spin-polarized current in spintronic devices with tailored functionalities. Here, we report on the synthesis, crystal growth, crystal and electronic structure, and magnetic properties of the Fe-based FeAl2S4 layered sulfide. In the crystal structure, Fe and Al atoms mix on octahedral and tetrahedral sites between hexagonal layers of S atoms, which are terminated by the van der Waals gaps. Band structure calculations reveal strong electronic correlations within the semiconducting ground state, which induce ferromagnetism with the magnetic moment of 0.12µB per formula unit for a Hubbard interaction U = 5 eV and Hund's rule coupling J = 0.8 eV. Crystal growth employing chemical vapor transport reactions results in bulk cleavable crystals, which show paramagnetic Curie-Weiss behavior at high temperatures with the Fe2+ magnetic centers. At low temperatures, an anomaly is observed on the magnetic susceptibility curve, below which the magnetization shows ferromagnetic hysteresis, indicating the presence of ferromagnetic correlations in FeAl2S4.

13.
Inorg Chem ; 61(1): 568-578, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34932353

RESUMO

Transition metal-based endohedral cluster intermetallic compounds are interesting electron phases, which frequently exhibit superconductivity with a peculiar interplay between the critical temperature and valence electron count. We present a new Re-based endohedral gallium cluster compound, Re2Ga9Ge. Its unique crystal structure (P42/mmc space group, a = 8.0452(3) Å, c = 6.7132(2) Å) is built by two types of gallium polyhedra: monocapped Archimedean antiprisms centered by rhenium atoms and tetrahedra containing a main-group element inside. The analysis of chemical bonding shows the presence of localized pairwise interactions between the p-block elements and the formation of multicenter bonds with the participation of d-orbitals of rhenium. In the electronic band structure, the Fermi level is located in a narrow pseudogap indicating the optimum band filling and thus explaining the virtual absence of a homogeneity range. The compound exhibits Pauli paramagnetism and metallic properties with unexpectedly low thermal conductivity. A sharp anomaly observed on the magnetic susceptibility and resistivity curves presumably indicates the electronic phase transition accompanied by charge ordering at the characteristic temperature of T * = 271 K in zero magnetic field.

14.
Molecules ; 26(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577182

RESUMO

Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as alternative optoelectronic materials. In this work, we demonstrate that reactions of two aromatic diamines with iodine in hydroiodic acid produced phenylenediammonium (PDA) and N,N-dimethyl-phenylenediammonium (DMPDA) triiodides, PDA(I3)2⋅2H2O and DMPDA(I3)I, respectively. If the source of bismuth was added, they were converted into previously reported PDA(BiI4)2⋅I2 and new (DMPDA)2(BiI6)(I3)⋅2H2O, having band gaps of 1.45 and 1.7 eV, respectively, which are in the optimal range for efficient solar light absorbers. All four compounds presented organic-inorganic hybrids, whose supramolecular structures were based on a variety of intermolecular forces, including (N)H⋅⋅⋅I and (N)H⋅⋅⋅O hydrogen bonds as well as I⋅⋅⋅I secondary and weak interactions. Details of their molecular and supramolecular structures are discussed based on single-crystal X-ray diffraction data, thermal analysis, and Raman and optical spectroscopy.

15.
Dalton Trans ; 50(15): 5109-5114, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881090

RESUMO

When a transition metal combines with an excess of a p-metal, the latter forms endohedral clusters with the number of vertices up to 14. These clusters are the building units of endohedral cluster intermetallic compounds. Although discovered a few decades ago, they have gained renewed interest due to their peculiar crystal and electronic structures and frequently observed superconducting properties. Advances over recent years reveal that endohedral cluster architectures are flexible enough, enabling chemical substitutions and the formation of a series of structurally related phases, where the same clusters can be arranged in different ways. Within the structural series, the superconducting-state parameters, including critical temperature and magnetic field, can be controlled and finely tuned. Herein, we present the most recent results in the chemical properties and superconductivity of endohedral cluster intermetallics and provide an outlook for the field.

16.
Chem Commun (Camb) ; 57(17): 2184-2187, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33527109

RESUMO

Herein, we report on intermetallic iron germanide (Fe6Ge5) as a novel oxygen evolution reaction (OER) precatalyst with a Tafel slope of 32 mV dec-1 and an overpotential of 272 mV at 100 mA cm-2 in alkaline media. Furthermore, we uncover the in situ formation of a core-shell like structure that slowly collapses under OER conditions.

17.
Inorg Chem ; 59(17): 12748-12757, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845622

RESUMO

Intermetallic compounds with semiconducting properties are rare, but they give rise to advanced materials for energy conversion and saving applications. Here, we present ReGa2Ge, a new electron-precise narrow-gap intermetallic semiconductor. The compound crystallizes in the IrIn3 structure type (space group P42/mnm, a = 6.5734(3) Å, c = 6.7450(8) Å, and Z = 4), where Re atoms occupy the Ir site, while Ga and Ge jointly populate the In sites. 69,71Ga nuclear quadrupole resonance spectroscopy indicates nonstatistical partially ordered distribution of Ga and Ge over two available crystallographic sites; however, the Ga:Ge ratio is exactly 2:1 without noticeable homogeneity range. The stoichiometry of ReGa2Ge ensures its precise valence electron count, which is 17 e- per formula unit. Accordingly, a narrow energy gap opens up at the Fermi energy in the electronic structure. Electrical resistivity, Seebeck coefficient, and thermal conductivity are in agreement with the semiconducting behavior deduced from the electronic structure calculations and point to prospective thermoelectric properties at high temperatures. Bonding analysis reveals dominant covalency in Re-E (E = Ga, Ge) and Re-Re interactions.

18.
Front Chem ; 8: 564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850618

RESUMO

Structure and properties of an inorganic perovskite Cs2SnI6 demonstrated its potential as a light-harvester or electron-hole transport material; however, its optoelectronic properties are poorer than those of lead-based perovskites. Here, we report the way of light tuning of absorption and transport properties of cesium iodostannate(IV) Cs2SnI6 via partial heterovalent substitution of tin for indium. Light absorption and optical bandgaps of materials have been investigated by UV-vis absorption and photoluminescent spectroscopies. Low-temperature electron paramagnetic resonance spectroscopy was used to study the kind of paramagnetic centers in materials.

19.
Molecules ; 25(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549353

RESUMO

Exploiting a template effect of 1,4-diazacycloheptane (also known as homopiperazine, Hpipe), four new hybrid iodides, (HpipeH2)2Bi2I10·2H2O, (HpipeH2)I(I3), (HpipeH2)3I6·H2O, and (HpipeH2)3(H3O)I7, were prepared and their crystal structures were solved using single crystal X-ray diffraction data. All four solid-state crystal structures feature the HpipeH22+ cation alternating with Bi2I104-, I3-, or I- anions and solvent water or H3O+ cation. HpipeH22+ assembles anionic and neutral building blocks into polymer structures by forming four strong (N)H···I and (N)H···O hydrogen bonds per cation, with the H···I distances ranging from 2.44 to 2.93 Å and H···O distances of 1.88-1.89 Å. These hydrogen bonds strongly affect the properties of compounds; in particular, in the case of (HpipeH2)2Bi2I10·2H2O, they ensure narrowing of the band gap down to 1.8 eV and provide high thermal stability up to 240 °C, remarkable for a hydrated molecular solid.


Assuntos
Bismuto/química , Iodetos/química , Piperazina/química , Cátions/química , Complexos de Coordenação/química , Cristalografia por Raios X/métodos , Compostos Heterocíclicos/química , Ligação de Hidrogênio , Estrutura Molecular , Polímeros/química , Água/química
20.
Dalton Trans ; 49(22): 7426-7435, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432284

RESUMO

Systematic studies of the ZrCuSiAs (also LaOAgS or 1111) structure type resulted in the synthesis of two new fluoride chalcogenides, EuFAgSe and EuFAg1-δTe, whereas their sulfide analog, EuFAgS, could not be obtained. Both new compounds are tetragonal, P4/nmm, with cell parameters a = 4.1542(1) Å, c = 9.2182(1) Å for the selenide and a = 4.3255(1) Å, c = 9.5486(1) Å for the telluride. Rietveld refinement reveals a significant silver deficiency in the telluride (δ = 0.05), while the selenide is nearly stoichiometric. Both compounds are semiconductors as shown by diffuse reflectance spectroscopy and confirmed by density-functional calculations of the band structure. Magnetism of both compounds is predominantly driven by Eu2+, as indicated by magnetic susceptibility measurements and corroborated by 151Eu Mössbauer spectroscopy. EuFAg1-δTe and EuFAgSe are paramagnetic down to 1.8 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...