Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 936-945, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153812

RESUMO

Methods to synthesize diverse collections of substituted piperidines are valuable due to the prevalence of this heterocycle in pharmaceutical compounds. Here, we present a general strategy to access N-(hetero)arylpiperidines using a pyridine ring-opening and ring-closing approach via Zincke imine intermediates. This process generates pyridinium salts from a wide variety of substituted pyridines and (heteroaryl)anilines; hydrogenation reactions and nucleophilic additions then access the N-(hetero)arylpiperidine derivatives. We successfully applied high-throughput experimentation (HTE) using pharmaceutically relevant pyridines and (heteroaryl)anilines as inputs and developed a one-pot process using anilines as nucleophiles in the pyridinium salt-forming processes. This strategy is viable for generating piperidine libraries and applications such as the convergent coupling of complex fragments.

2.
Chemistry ; 29(30): e202300551, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36840693

RESUMO

The roles of substituent and solvent effects in promoting the 4π electrocyclization of N-alkenylnitrones to give azetidine nitrones have been investigated by experimental examination of relative rates, activation energies, and linear free energy relationships. These transformations are synthetically important because they favor the formation of a strained heterocyclic ring with imbedded functionality and stereochemical information for versatile derivatization. Mechanistic investigations, including Hammett studies, solvent-dependent Eyring studies, and solvent isotope effects, provide insight into the steric and electronic factors that control these electrocyclizations and identify trends that can be used to advance this approach towards the rapid synthesis of complex azetidines.

3.
J Am Chem Soc ; 144(50): 23115-23126, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36490321

RESUMO

This manuscript describes a mild, functional group tolerant, and metal-free C-H carboxylation that enables direct access to azole-2-carboxylic acids, followed by amide coupling in one pot. This demonstrates a significant expansion of the accessible chemical space of azole-2-amides, compared to previously known methodologies. Key to the described reactivity is the use of silyl triflate reagents, which serve as reaction mediators in C-H deprotonation and stabilizers of (otherwise unstable) azole carboxylic acid intermediates. A diverse azole substrate scope designed via machine-learning-guided analysis demonstrates the broad utility of the sequence. Density functional theory calculations provide detailed insights into the role of silyl triflates in the reaction mechanism. Transferrable applications of the protocol are successfully established: (i) A low pressure (CO2 balloon) option for synthesizing azole-2-carboxylic acids without the need for high-pressure equipment; (ii) the use of 13CO2 for the synthesis of labeled compounds; (iii) isocyanates as alternative electrophiles for direct C-H amidation; (iv) and the use of the developed chemistry in a 24 × 12 parallel synthesis workflow with a 90% library success rate. Fundamentally, the reported protocol expands the use of heterocycle C-H functionalization from late-stage functionalization applications toward its use in library synthesis. It provides general access to densely functionalized azole-2-carboxylic acid building blocks and demonstrates their one-pot diversification.


Assuntos
Amidas , Ácidos Carboxílicos , Amidas/química , Ácidos Carboxílicos/química , Azóis , Dióxido de Carbono
4.
J Am Chem Soc ; 144(34): 15764-15778, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35951601

RESUMO

The mechanism of the asymmetric hydrogenation of prochiral enamides by well-defined, neutral bis(phosphine) cobalt(0) and cobalt(II) precatalysts has been explored using(R,R)-iPrDuPhos ((R,R)-iPrDuPhos = (+)-1,2-bis[(2R,5R)-2,5-diisopropylphospholano]benzene) as a representative chiral bis(phosphine) ligand. A series of (R,R)-(iPrDuPhos)Co(enamide) (enamide = methyl-2-acetamidoacrylate (MAA), methyl(Z)-α-acetamidocinnamate (MAC), and methyl(Z)-acetamido(4-fluorophenyl)acrylate (4FMAC)) complexes (1-MAA, 1-MAC, and 1-4FMAC), as well as a dinuclear cobalt tetrahydride, [(R,R)-(iPrDuPhos)Co]2(µ2-H)3(H) (2), were independently synthesized, characterized, and evaluated in both stoichiometric and catalytic hydrogenation reactions. Characterization of (R,R)-(iPrDuPhos)Co(enamide) complexes by X-ray diffraction established the formation of the pro-(R) diastereomers in contrast to the (S)-alkane products obtained from the catalytic reaction. In situ monitoring of the cobalt-catalyzed hydrogenation reactions by UV-visible and freeze-quench electron paramagnetic resonance spectroscopies revealed (R,R)-(iPrDuPhos)Co(enamide) complexes as the catalyst resting state for all the three enamides studied. Variable time normalization analysis kinetic studies of the cobalt-catalyzed hydrogenation reactions in methanol established a rate law that is first order in (R,R)-(iPrDuPhos)Co(enamide) and H2 but independent of the enamide concentration. Deuterium-labeling studies, including measurement of an H2/D2 kinetic isotope effect and catalytic hydrogenations with HD, established an irreversible H2 addition step to the bound enamide. Density functional theory calculations support that this step is both rate and selectivity determining. Calculations, as well as HD-labeling studies, provide evidence for two-electron redox cycling involving cobalt(0) and cobalt(II) intermediates during the catalytic cycle. Taken together, these experiments support an unsaturated pathway for the [(R,R)-(iPrDuPhos)Co]-catalyzed hydrogenation of prochiral enamides.


Assuntos
Cobalto , Hidrogenação , Cinética , Estrutura Molecular , Fosfinas
5.
J Am Chem Soc ; 144(31): 14026-14030, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900216

RESUMO

The collaborative total synthesis of darobactin A, a recently isolated antibiotic that selectively targets Gram-negative bacteria, has been accomplished in a convergent fashion with a longest linear sequence of 16 steps from d-Garner's aldehyde and l-serine. Scalable routes toward three non-canonical amino acids were developed to enable the synthesis. The closure of the bismacrocycle was realized through sequential, halogen-selective Larock indole syntheses, where the proper order of cyclizations proved crucial for the formation of the desired atropisomer of the natural product.


Assuntos
Aldeídos , Aminoácidos , Aldeídos/química , Aminoácidos/química , Ciclização , Fenilpropionatos , Estereoisomerismo
6.
J Org Chem ; 87(4): 2120-2128, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34582192

RESUMO

Two scalable and efficient synthetic routes for the synthesis of a T-type calcium channel antagonist MK-8998 were developed from a simple pyridine building block. The key step to set the stereochemistry relied on either chiral rhodium catalyst-mediated asymmetric hydrogenation of an enamide or transamination of an arylketone that provided the corresponding product in high enantioselectivity and high yield.


Assuntos
Bloqueadores dos Canais de Cálcio , Ródio , Aminação , Bloqueadores dos Canais de Cálcio/farmacologia , Catálise , Hidrogenação , Estereoisomerismo
7.
Chem Sci ; 12(26): 9031-9036, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34276931

RESUMO

An efficient route to the HCV antiviral agent uprifosbuvir was developed in 5 steps from readily available uridine in 50% overall yield. This concise synthesis was achieved by development of several synthetic methods: (1) complexation-driven selective acyl migration/oxidation; (2) BSA-mediated cyclization to anhydrouridine; (3) hydrochlorination using FeCl3/TMDSO; (4) dynamic stereoselective phosphoramidation using a chiral nucleophilic catalyst. The new route improves the yield of uprifosbuvir 50-fold over the previous manufacturing process and expands the tool set available for synthesis of antiviral nucleotides.

8.
Org Lett ; 22(19): 7562-7566, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32946691

RESUMO

Prochiral hydrazones undergo efficient and highly selective hydrogenation in the presence of a chiral diphosphine ruthenium catalyst, yielding enantioenriched hydrazine products (up to 99% ee). The mild reaction conditions and broad functional group tolerance of this method allow access to versatile chiral hydrazine building blocks containing aryl bromide, heteroaryl, alkyl, cycloalkyl, and ester substituents. This method was also demonstrated on >150 g scale, providing a valuable hydrazine intermediate en route to an active pharmaceutical ingredient.

9.
J Am Chem Soc ; 142(11): 5272-5281, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32064867

RESUMO

The asymmetric hydrogenation of α,ß-unsaturated carboxylic acids using readily prepared bis(phosphine) cobalt(0) 1,5-cyclooctadiene precatalysts is described. Di-, tri-, and tetra-substituted acrylic acid derivatives with various substitution patterns as well as dehydro-α-amino acid derivatives were hydrogenated with high yields and enantioselectivities, affording chiral carboxylic acids including Naproxen, (S)-Flurbiprofen, and a d-DOPA precursor. Turnover numbers of up to 200 were routinely obtained. Compatibility with common organic functional groups was observed with the reduced cobalt(0) precatalysts, and protic solvents such as methanol and isopropanol were identified as optimal. A series of bis(phosphine) cobalt(II) bis(pivalate) complexes, which bear structural similarity to state-of-the-art ruthenium(II) catalysts, were synthesized, characterized, and proved catalytically competent. X-band EPR experiments revealed bis(phosphine)cobalt(II) bis(carboxylate)s were generated in catalytic reactions and were identified as catalyst resting states. Isolation and characterization of a cobalt(II)-substrate complex from a stoichiometric reaction suggests that alkene insertion into the cobalt hydride occurred in the presence of free carboxylic acid, producing the same alkane enantiomer as that from the catalytic reaction. Deuterium labeling studies established homolytic H2 (or D2) activation by Co(0) and cis addition of H2 (or D2) across alkene double bonds, reminiscent of rhodium(I) catalysts but distinct from ruthenium(II) and nickel(II) carboxylates that operate by heterolytic H2 cleavage pathways.

10.
J Org Chem ; 85(2): 994-1000, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31850754

RESUMO

Relebactam, a potent ß-lactamase inhibitor, in combination with Primaxin is an FDA-approved (Recarbrio) treatment for serious and antibiotic-resistant bacterial infections. An efficient synthesis of key chiral piperidine intermediate 1 suitable for large-scale preparation of relebactam is described. The key steps include a unique highly diastereoselective FeCl3·6H2O/NaBH4 reduction of a chiral oxime ether and chemoselective amidation of the resulting unprotected pipecolic acid. Nuclear magnetic resonance studies and density functional theory calculations were carried out on the substrate-Fe(III) complexes, which shed light on diastereoselective reduction.


Assuntos
Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/farmacologia , Boroidretos/química , Cloretos/química , Compostos Férricos/química , Oximas/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/farmacologia , Compostos Azabicíclicos/química , Éteres/química , Estrutura Molecular , Oxirredução , Análise Espectral/métodos , Estereoisomerismo , Água/química
11.
J Org Chem ; 84(12): 8006-8018, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31124362

RESUMO

A practical and efficient enantioselective synthesis of the calcitonin gene-related peptide receptor antagonist 1 has been developed. The key structural component of the active pharmaceutical ingredient is a syn-1,2-amino-fluoropiperidine 4. Two approaches were developed to synthesize this important pharmacophore. Initially, Ru-catalyzed asymmetric hydrogenation of fluoride-substituted enamide 8 enabled the synthesis of sufficient quantities of compound 1 to support early preclinical studies. Subsequently, a novel, cost-effective route to this intermediate was developed utilizing a dynamic kinetic asymmetric transamination of ketone 9. This synthesis also features a robust Ullmann coupling to install a bis-aryl ether using a soluble Cu(I) catalyst. Finally, an enzymatic desymmetrization of meso-diester 7 was exploited for the construction of the γ-lactam moiety in 1.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/química , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/síntese química , Piperidinas/química , Piperidinas/síntese química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Amidas/química , Técnicas de Química Sintética , Lactamas/química , Fenol/química
12.
J Org Chem ; 84(8): 4780-4795, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30475616

RESUMO

An asymmetric synthesis of HCV NS5B nucleoside polymerase inhibitor (1) is described. This novel route features several remarkably diastereoselective and high-yielding transformations, including construction of the all-carbon quaternary stereogenic center at C-2 via a thermodynamic aldol reaction. A subsequent glycosylation reaction with activated uracil via C-1 phosphate and installation of the cyclic phosphate group using an achiral phosphorus(III) reagent followed by oxidation provides 1.


Assuntos
Antivirais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Humanos , Estrutura Molecular , Estereoisomerismo , Proteínas não Estruturais Virais/metabolismo
13.
Science ; 360(6391): 888-893, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798879

RESUMO

Identifying catalyst activation modes that exploit one-electron chemistry and overcome associated deactivation pathways will be transformative for developing first-row transition metal catalysts with performance equal or, ideally, superior to precious metals. Here we describe a zinc-activation method compatible with high-throughput reaction discovery that identified scores of cobalt-phosphine combinations for the asymmetric hydrogenation of functionalized alkenes. An optimized catalyst prepared from (R,R)-Ph-BPE {Ph-BPE, 1,2-bis[(2R,5R)-2,5-diphenylphospholano]ethane} and cobalt chloride [CoCl2·6H2O] exhibited high activity and enantioselectivity in protic media and enabled the asymmetric synthesis of the epilepsy medication levetiracetam at 200-gram scale with 0.08 mole % catalyst loading. Stoichiometric studies established that the cobalt (II) catalyst precursor (R,R)-Ph-BPECoCl2 underwent ligand displacement by methanol, and zinc promoted facile one-electron reduction to cobalt (I), which more stably bound the phosphine.

14.
Acc Chem Res ; 50(12): 2976-2985, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172435

RESUMO

The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling. However, the quantities of both time and starting materials available for chemistry troubleshooting in this space generally are severely limited. Adapting to these needs led us to invest in smaller predefined arrays of transformation-specific screening "kits" and push the boundaries of miniaturization in chemistry screening, culminating in the development of "nanoscale" reaction screening carried out in 1536-well plates. Grappling with the problem of generality also inspired the exploration of cheminformatics-driven HTE approaches such as the Chemistry Informer Libraries. These next-generation HTE methods promise to empower chemists to run orders of magnitude more experiments and enable "big data" informatics approaches to reaction design and troubleshooting. With these advances, HTE is poised to revolutionize how chemists across both industry and academia discover new synthetic methods, develop them into tools of broad utility, and apply them to problems of practical significance.


Assuntos
Técnicas de Química Sintética/métodos , Tecnologia Farmacêutica/métodos , Catálise/efeitos da radiação , Complexos de Coordenação/química , Descoberta de Drogas , Hidrogenação , Miniaturização
15.
ACS Med Chem Lett ; 8(6): 601-607, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626518

RESUMO

Large arrays of hypothesis-driven, rationally designed experiments are powerful tools for solving complex chemical problems. Conceptual and practical aspects of chemical high-throughput experimentation are discussed. A case study in the application of high-throughput experimentation to a key synthetic step in a drug discovery program and subsequent optimization for the first large scale synthesis of a drug candidate is exemplified.

16.
Org Lett ; 18(8): 1812-5, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015542

RESUMO

An asymmetric synthesis of a silicon-containing proline surrogate, N-Boc-(R)-silaproline (1), is described. Starting from N-Boc-dehydroalanine ester, deprotonation, followed by N-alkylation with chloromethyldimethylsilane under flow conditions, afforded the N-alkylated product 8 in 91% yield. An unprecedented enantioselective (NBD)2RhBF4/Josiphos 404-1 catalyzed 5-endo-trig hydrosilylation afforded the silaproline ester in 85-90% yield and >95% ee. Subsequent saponification and salt formation upgraded 1 to >99% ee.


Assuntos
Alanina/análogos & derivados , Compostos de Organossilício/síntese química , Prolina/análogos & derivados , Alanina/química , Alquilação , Catálise , Ciclização , Compostos de Organossilício/química , Prolina/síntese química , Prolina/química
17.
Org Lett ; 18(6): 1394-7, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26950496

RESUMO

The development of a convergent and highly stereoselective synthesis of an HCV NS3/4a protease inhibitor possessing a unique spirocyclic and macrocyclic architecture is described. A late-stage spirocyclization strategy both enabled rapid structure-activity relationship studies in the drug discovery phase and simultaneously served as the basis for the large scale drug candidate preparation for clinical use. Also reported is the discovery of a novel InCl3-catalyzed carbonyl reduction with household aluminum foil or zinc powder as the terminal reductant.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Descoberta de Drogas , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Macrocíclicos/química , Estrutura Molecular , Compostos de Espiro/química , Relação Estrutura-Atividade
18.
J Am Chem Soc ; 138(10): 3562-9, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26890979

RESUMO

A highly active and enantioselective phosphine-nickel catalyst for the asymmetric hydrogenation of α,ß-unsaturated esters has been discovered. The coordination chemistry and catalytic behavior of nickel halide, acetate, and mixed halide-acetate with chiral bidentate phosphines have been explored and deuterium labeling studies, the method of continuous variation, nonlinear studies, and kinetic measurements have provided mechanistic understanding. Activation of molecular hydrogen by a trimeric (Me-DuPhos)3Ni3(OAc)5I complex was established as turnover limiting followed by rapid conjugate addition of a nickel hydride and nonselective protonation to release the substrate. In addition to reaction discovery and optimization, the previously unreported utility high-throughput experimentation for mechanistic elucidation is also described.

19.
J Am Chem Soc ; 138(10): 3314-24, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854359

RESUMO

The asymmetric hydrogenation of cyclic alkenes lacking coordinating functionality with a C1-symmetric bis(imino)pyridine cobalt catalyst is described and has been applied to the synthesis of important substructures found in natural products and biologically active compounds. High activities and enantioselectivities were observed with substituted benzo-fused five-, six-, and seven-membered alkenes. The stereochemical outcome was dependent on both the ring size and exo/endo disposition. Deuterium labeling experiments support rapid and reversible 2,1-insertion that is unproductive for generating alkane product but accounts for the unusual isotopic distribution in deuterated alkanes. Analysis of the stereochemical outcome of the hydrogenated products coupled with isotopic labeling, stoichiometric, and kinetic studies established 1,2-alkene insertion as both turnover limiting and enantiodetermining with no evidence for erosion of cobalt alkyl stereochemistry by competing ß-hydrogen elimination processes. A stereochemical model accounting for the preferred antipodes of the alkanes is proposed and relies on the subtle influence of the achiral aryl imine substituent on the cobalt catalyst.

20.
J Org Chem ; 81(3): 824-30, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26743694

RESUMO

α- and ß-substitution of dihydrocinnamates has been shown to increase the biological activity of various drug candidates. Recently, we identified enantio- and diastereopure α-methyl-ß-cyclopropyldihydrocinnamates to be important pharmacophores in one of our drug discovery programs and endeavored to devise an asymmetric hydrogenation strategy to improve access to this valuable framework. We used high throughput experimentation to define stereoconvergent Suzuki-Miyaura cross-coupling conditions affording (Z)-α-methyl-ß-cyclopropylcinnamates and subsequent ruthenium-catalyzed asymmetric hydrogenation conditions affording the desired products in excellent enantio- and diastereoselectivities. These conditions were executed on multigram to kilogram scale to provide three key enantiopure α-methyl-ß-cyclopropyldihydrocinnamates with high selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...