Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem B ; 126(12): 2420-2429, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35315675

RESUMO

Liquid-liquid extraction (LLE), the go-to process for a variety of chemical separations, is limited by spontaneous organic phase splitting upon sufficient solute loading, called third phase formation. In this study we explore the applicability of critical phenomena theory to gain insight into this deleterious phase behavior with the goal of improving separations efficiency and minimizing waste. A series of samples representative of rare earth purification were constructed to include each of one light and one heavy lanthanide (cerium and lutetium) paired with one of two common malonamide extractants (DMDOHEMA and DMDBTDMA). The resulting postextraction organic phases are chemically complex and often form rich hierarchical structures whose statics and dynamics near the critical point were probed herein with small-angle X-ray scattering and high-speed X-ray photon correlation spectroscopy. Despite their different extraction behaviors, all samples show remarkably similar critical behavior with exponents well described by classical critical point theory consistent with the 3D Ising model, where the critical behavior is characterized by fluctuations with a single diverging length scale. This unexpected result indicates a significant reduction in relevant chemical parameters at the critical point, indicating that the underlying behavior of phase transitions in LLE rely on far fewer variables than are generally assumed. The obtained scalar order parameter is attributed to the extractant fraction of the extractant/diluent mixture, revealing that other solution components and their respective concentrations simply shift the critical temperature but do not affect the nature of the critical fluctuations. These findings point to an opportunity to drastically simplify studies of liquid-liquid phase separation and phase diagram development in general while providing insights into LLE process improvement.

3.
Phys Rev Lett ; 125(12): 125504, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016761

RESUMO

The advent of high-speed x-ray photon correlation spectroscopy now allows the study of critical phenomena in fluids to much smaller length scales and over a wider range of temperatures than is possible with dynamic light scattering. We present an x-ray photon correlation spectroscopy study of critical fluctuation dynamics in a complex fluid typical of those used in liquid-liquid extraction (LLE) of ions, dodecane-DMDBTDMA with extracted aqueous Ce(NO_{3})_{3}. We observe good agreement with both static and dynamic scaling without the need for significant noncritical background corrections. Critical exponents agree with 3D Ising values, and the fluctuation dynamics are described by simple exponential relaxation. The form of the dynamic master curve deviates somewhat from the Kawasaki result, with a more abrupt transition between the critical and noncritical asymptotic behavior. The concepts of critical phenomena thus provide a quantitative framework for understanding the structure and dynamics of LLE systems and a path forward to new LLE processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...