Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(9): 3503-3508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35922697

RESUMO

Proper bond strength of endodontic materials is an essential factor in the final success of root canal treatments, including perforation repairs. This study was designed to evaluate the effect of two power outputs of Nd:YAG laser (1064 nm) on push-out bond strength (PBS) of ProRoot mineral trioxide aggregate (MTA) and calcium-enriched mixture cement (CEM Cement) in the repair of artificial furcal perforations. This ex vivo study enrolled 66 extracted human molars. After preparing the access cavity, perforations were created on the floor of the pulp chamber with a diameter of 1.4 mm. The teeth were randomly distributed into the following six groups according to the repair material (MTA and CEM) and power output of laser irradiation (1 W and 1.5 W); A: MTA (case), B: CEM (case), C: Nd:YAG (1 W)/MTA, D: Nd:YAG (1 W)/CEM, E: Nd:YAG (1.5 W)/MTA, and F: Nd:YAG (1.5 W)/CEM. Then, a universal testing machine was utilized to assess the PBS. Data analysis was performed using ANOVA and T tests. Significant level was considered at P < 0.05. The highest mean ± SD of PBS was noted in Group Nd:YAG (1 W)/MTA (58.92 ± 36.13), followed by Nd:YAG (1.5 W)/MTA > Nd:YAG (1.5 W)/CEM > Nd:YAG (1 W)/CEM > MTA > and CEM. A significant difference was noted between laser and non-laser applications (P < 0.05). However, the increase of power output from 1 to 1.5 W had no significant influence on PBS (P > 0.05). The PBS of MTA groups was always significantly greater than that of CEM groups (P < 0.05). Although Nd:YAG laser irradiation positively influenced on PBS values in both material studied, increasing power output was not effective.


Assuntos
Lasers de Estado Sólido , Materiais Restauradores do Canal Radicular , Humanos , Lasers de Estado Sólido/uso terapêutico , Dente Molar , Materiais Restauradores do Canal Radicular/química
2.
Eur J Dent ; 13(2): 156-160, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31509877

RESUMO

OBJECTIVE: The aim of this study was to compare the fracture resistance of immature bovine roots when using ProRoot MTA, CEM Cement, and Biodentine as root filling materials. MATERIALS AND METHODS: An immature bovine tooth model was developed by removing the coronal and apical portions of 70 bovine incisors 8 mm above and 12 mm below the cementoenamel junction (CEJ). The specimens were then divided into five groups: ProRoot MTA, CEM Cement, Biodentine, gutta-percha/AH26 sealer, and control. All groups received a 5-mm apical plug with a temporary restorative material. Then, the remaining root canal space was filled with one of the afore-mentioned materials. After setting, the specimens were mounted in acrylic resin. Then, 3 mm coronal to the CEJ from the buccal side of the teeth and at a 135°angle to the long axis, the specimens were loaded until fracture. RESULTS: The specimens in the Biodentine (2196 N) and ProRoot MTA (2103 N) groups had significantly greater fracture resistance in comparison to the control group (p = 0.01). No significant difference was found between CEM Cement, gutta-percha and sealer AH26, and control groups. No significant differences occurred between the four experimental groups (p = 0.45). CONCLUSION: Filling the root canal space with ProRoot MTA and Biodentine contributed to higher fracture resistance values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...