Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1406566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827615

RESUMO

Background: Emerging infectious diseases pose a significant threat to global public health. Timely detection and response are crucial in mitigating the spread of such epidemics. Inferring the onset time and epidemiological characteristics is vital for accelerating early interventions, but accurately predicting these parameters in the early stages remains challenging. Methods: We introduce a Bayesian inference method to fit epidemic models to time series data based on state-space modeling, employing a stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model for transmission dynamics analysis. Our approach uses the particle Markov chain Monte Carlo (PMCMC) method to estimate key epidemiological parameters, including the onset time, the transmission rate, and the recovery rate. The PMCMC algorithm integrates the advantageous aspects of both MCMC and particle filtering methodologies to yield a computationally feasible and effective means of approximating the likelihood function, especially when it is computationally intractable. Results: To validate the proposed method, we conduct case studies on COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China, respectively. Using early-stage case reports, the PMCMC algorithm accurately predicted the onset time, key epidemiological parameters, and the basic reproduction number. These findings are consistent with empirical studies and the literature. Conclusion: This study presents a robust Bayesian inference method for the timely investigation of emerging infectious diseases. By accurately estimating the onset time and essential epidemiological parameters, our approach is versatile and efficient, extending its utility beyond COVID-19.


Assuntos
Algoritmos , Teorema de Bayes , COVID-19 , Doenças Transmissíveis Emergentes , Cadeias de Markov , Humanos , Doenças Transmissíveis Emergentes/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , China/epidemiologia , Método de Monte Carlo , SARS-CoV-2 , Surtos de Doenças/estatística & dados numéricos , Fatores de Tempo , Modelos Epidemiológicos
2.
Infect Dis Poverty ; 13(1): 43, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863070

RESUMO

BACKGROUND: The strong invasiveness and rapid expansion of dengue virus (DENV) pose a great challenge to global public health. However, dengue epidemic patterns and mechanisms at a genetic scale, particularly in term of cross-border transmissions, remain poorly understood. Importation is considered as the primary driver of dengue outbreaks in China, and since 1990 a frequent occurrence of large outbreaks has been triggered by the imported cases and subsequently spread to the western and northern parts of China. Therefore, this study aims to systematically reveal the invasion and diffusion patterns of DENV-1 in Guangdong, China from 1990 to 2019. METHODS: These analyses were performed on 179 newly assembled genomes from indigenous dengue cases in Guangdong, China and 5152 E gene complete sequences recorded in Chinese mainland. The genetic population structure and epidemic patterns of DENV-1 circulating in Chinese mainland were characterized by phylogenetics, phylogeography, phylodynamics based on DENV-1 E-gene-based globally unified genotyping framework. RESULTS: Multiple serotypes of DENV were co-circulating in Chinese mainland, particularly in Guangdong and Yunnan provinces. A total of 189 transmission clusters in 38 clades belonging to 22 subgenotypes of genotype I, IV and V of DENV-1 were identified, with 7 Clades of Concern (COCs) responsible for the large outbreaks since 1990. The epidemic periodicity was inferred from the data to be approximately 3 years. Dengue transmission events mainly occurred from Great Mekong Subregion-China (GMS-China), Southeast Asia (SEA), South Asia Subcontinent (SASC), and Oceania (OCE) to coastal and land border cities respectively in southeastern and southwestern China. Specially, Guangzhou was found to be the most dominant receipting hub, where DENV-1 diffused to other cities within the province and even other parts of the country. Genome phylogeny combined with epidemiological investigation demonstrated a clear local consecutive transmission process of a 5C1 transmission cluster (5C1-CN4) of DENV-1 in Guangzhou from 2013 to 2015, while the two provinces of Guangdong and Yunnan played key roles in ongoing transition of dengue epidemic patterns. In contextualizing within Invasion Biology theories, we have proposed a derived three-stage model encompassing the stages of invasion, colonization, and dissemination, which is supposed to enhance our understanding of dengue spreading patterns. CONCLUSIONS: This study demonstrates the invasion and diffusion process of DENV-1 in Chinese mainland within a global genotyping framework, characterizing the genetic diversities of viral populations, multiple sources of importation, and periodic dynamics of the epidemic. These findings highlight the potential ongoing transition trends from epidemic to endemic status offering a valuable insight into early warning, prevention and control of rapid spreading of dengue both in China and worldwide.


Assuntos
Vírus da Dengue , Dengue , Genótipo , Filogenia , Sorogrupo , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/fisiologia , China/epidemiologia , Dengue/epidemiologia , Dengue/virologia , Dengue/transmissão , Humanos , Surtos de Doenças , Filogeografia , Genoma Viral
3.
Parasit Vectors ; 17(1): 79, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383475

RESUMO

BACKGROUND: More than half of the global population lives in areas at risk of dengue (DENV) transmission. Developing an efficient risk prediction system can help curb dengue outbreaks, but multiple variables, including mosquito-based surveillance indicators, still constrain our understanding. Mosquito or oviposition positive index (MOI) has been utilized in field surveillance to monitor the wild population density of Aedes albopictus in Guangzhou since 2005. METHODS: Based on the mosquito surveillance data using Mosq-ovitrap collection and human landing collection (HLC) launched at 12 sites in Guangzhou from 2015 to 2017, we established a MOI-based model of the basic dengue reproduction number (R0) using the classical Ross-Macdonald framework combined with a linear mixed-effects model. RESULTS: During the survey period, the mean MOI and adult mosquito density index (ADI) using HLC for Ae. albopictus were 12.96 ± 17.78 and 16.79 ± 55.92, respectively. The R0 estimated from the daily ADI (ADID) showed a significant seasonal variation. A 10-unit increase in MOI was associated with 1.08-fold (95% CI 1.05, 1.11) ADID and an increase of 0.14 (95% CI 0.05, 0.23) in the logarithmic transformation of R0. MOI-based R0 of dengue varied by month and average monthly temperature. During the active period of Ae. albopictus from April to November in Guangzhou region, a high risk of dengue outbreak was predicted by the MOI-based R0 model, especially from August to October, with the predicted R0 > 1. Meanwhile, from December to March, the estimates of MOI-based R0 were < 1. CONCLUSIONS: The present study enriched our knowledge about mosquito-based surveillance indicators and indicated that the MOI of Ae. albopictus could be valuable for application in estimating the R0 of dengue using a statistical model. The MOI-based R0 model prediction of the risk of dengue transmission varied by month and temperature in Guangzhou. Our findings lay a foundation for further development of a complex efficient dengue risk prediction system.


Assuntos
Aedes , Dengue , Adulto , Animais , Feminino , Humanos , Dengue/epidemiologia , Número Básico de Reprodução , Oviposição , Mosquitos Vetores
4.
Infect Dis Poverty ; 11(1): 107, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36224651

RESUMO

BACKGROUND: Dengue is the fastest spreading arboviral disease, posing great challenges on global public health. A reproduceable and comparable global genotyping framework for contextualizing spatiotemporal epidemiological data of dengue virus (DENV) is essential for research studies and collaborative surveillance. METHODS: Targeting DENV-1 spreading prominently in recent decades, by reconciling all qualified complete E gene sequences of 5003 DENV-1 strains with epidemiological information from 78 epidemic countries/areas ranging from 1944 to 2018, we established and characterized a unified global high-resolution genotyping framework using phylogenetics, population genetics, phylogeography, and phylodynamics. RESULTS: The defined framework was discriminated with three hierarchical layers of genotype, subgenotype and clade with respective mean pairwise distances 2-6%, 0.8-2%, and ≤ 0.8%. The global epidemic patterns of DENV-1 showed strong geographic constraints representing stratified spatial-genetic epidemic pairs of Continent-Genotype, Region-Subgenotype and Nation-Clade, thereby identifying 12 epidemic regions which prospectively facilitates the region-based coordination. The increasing cross-transmission trends were also demonstrated. The traditional endemic countries such as Thailand, Vietnam and Indonesia displayed as persisting dominant source centers, while the emerging epidemic countries such as China, Australia, and the USA, where dengue outbreaks were frequently triggered by importation, showed a growing trend of DENV-1 diffusion. The probably hidden epidemics were found especially in Africa and India. Then, our framework can be utilized in an accurate stratified coordinated surveillance based on the defined viral population compositions. Thereby it is prospectively valuable for further hampering the ongoing transition process of epidemic to endemic, addressing the issue of inadequate monitoring, and warning us to be concerned about the cross-national, cross-regional, and cross-continental diffusions of dengue, which can potentially trigger large epidemics. CONCLUSIONS: The framework and its utilization in quantitatively assessing DENV-1 epidemics has laid a foundation and re-unveiled the urgency for establishing a stratified coordinated surveillance platform for blocking global spreading of dengue. This framework is also expected to bridge classical DENV-1 genotyping with genomic epidemiology and risk modeling. We will promote it to the public and update it periodically.


Assuntos
Vírus da Dengue , Dengue , Epidemias , Dengue/epidemiologia , Vírus da Dengue/genética , Genótipo , Humanos , Filogenia , Sorogrupo
5.
Geospat Health ; 16(1)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33733649

RESUMO

The transition from the control phase to elimination of malaria in China through the national malaria elimination programme has focussed attention on the need for improvement of the surveillance- response systems. It is now understood that routine passive surveillance is inadequate in the parasite elimination phase that requires supplementation by active surveillance in foci where cluster cases have occurred. This study aims to explore the spatial clusters and temporal trends of malaria cases by the multivariate auto-regressive state-space model (MARSS) along the border to Myanmar in southern China. Data for indigenous cases spanning the period from 2007 to 2010 were extracted from the China's Infectious Diseases Information Reporting Management System (IDIRMS). The best MARSS model indicated that malaria transmission in the study area during 36 months could be grouped into three clusters. The estimation of malaria transmission patterns showed a downward trend across all clusters. The proposed methodology used in this study offers a simple and rapid, yet effective way to categorize patterns of foci which provide assistance for active monitoring of malaria in the elimination phase.


Assuntos
Malária Vivax , Malária , China/epidemiologia , Humanos , Malária/epidemiologia , Malária Vivax/epidemiologia , Plasmodium vivax
6.
Infect Dis Poverty ; 10(1): 5, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413680

RESUMO

BACKGROUND: The pandemic of the coronavirus disease 2019 (COVID-19) has caused substantial disruptions to health services in the low and middle-income countries with a high burden of other diseases, such as malaria in sub-Saharan Africa. The aim of this study is to assess the impact of COVID-19 pandemic on malaria transmission potential in malaria-endemic countries in Africa. METHODS: We present a data-driven method to quantify the extent to which the COVID-19 pandemic, as well as various non-pharmaceutical interventions (NPIs), could lead to the change of malaria transmission potential in 2020. First, we adopt a particle Markov Chain Monte Carlo method to estimate epidemiological parameters in each country by fitting the time series of the cumulative number of reported COVID-19 cases. Then, we simulate the epidemic dynamics of COVID-19 under two groups of NPIs: (1) contact restriction and social distancing, and (2) early identification and isolation of cases. Based on the simulated epidemic curves, we quantify the impact of COVID-19 epidemic and NPIs on the distribution of insecticide-treated nets (ITNs). Finally, by treating the total number of ITNs available in each country in 2020, we evaluate the negative effects of COVID-19 pandemic on malaria transmission potential based on the notion of vectorial capacity. RESULTS: We conduct case studies in four malaria-endemic countries, Ethiopia, Nigeria, Tanzania, and Zambia, in Africa. The epidemiological parameters (i.e., the basic reproduction number [Formula: see text] and the duration of infection [Formula: see text]) of COVID-19 in each country are estimated as follows: Ethiopia ([Formula: see text], [Formula: see text]), Nigeria ([Formula: see text], [Formula: see text]), Tanzania ([Formula: see text], [Formula: see text]), and Zambia ([Formula: see text], [Formula: see text]). Based on the estimated epidemiological parameters, the epidemic curves simulated under various NPIs indicated that the earlier the interventions are implemented, the better the epidemic is controlled. Moreover, the effect of combined NPIs is better than contact restriction and social distancing only. By treating the total number of ITNs available in each country in 2020 as a baseline, our results show that even with stringent NPIs, malaria transmission potential will remain higher than expected in the second half of 2020. CONCLUSIONS: By quantifying the impact of various NPI response to the COVID-19 pandemic on malaria transmission potential, this study provides a way to jointly address the syndemic between COVID-19 and malaria in malaria-endemic countries in Africa. The results suggest that the early intervention of COVID-19 can effectively reduce the scale of the epidemic and mitigate its impact on malaria transmission potential.


Assuntos
COVID-19/epidemiologia , COVID-19/terapia , Malária/epidemiologia , Malária/terapia , COVID-19/transmissão , COVID-19/virologia , Etiópia/epidemiologia , Humanos , Malária/transmissão , Cadeias de Markov , Nigéria/epidemiologia , Pandemias , SARS-CoV-2/isolamento & purificação , Sindemia , Tanzânia/epidemiologia , Zâmbia/epidemiologia
7.
Infect Dis Poverty ; 9(1): 95, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678025

RESUMO

BACKGROUND: Disease surveillance systems are essential for effective disease intervention and control by monitoring disease prevalence as time series. To evaluate the severity of an epidemic, statistical methods are widely used to forecast the trend, seasonality, and the possible number of infections of a disease. However, most statistical methods are limited in revealing the underlying dynamics of disease transmission, which may be affected by various impact factors, such as environmental, meteorological, and physiological factors. In this study, we focus on investigating malaria transmission dynamics based on time series data. METHODS: A data-driven nonlinear stochastic model is proposed to infer and predict the dynamics of malaria transmission based on the time series of prevalence data. Specifically, the dynamics of malaria transmission is modeled based on the notion of vectorial capacity (VCAP) and entomological inoculation rate (EIR). A particle Markov chain Monte Carlo (PMCMC) method is employed to estimate the model parameters. Accordingly, a one-step-ahead prediction method is proposed to project the number of future malaria infections. Finally, two case studies are carried out on the inference and prediction of Plasmodium vivax transmission in Tengchong and Longling, Yunnan province, China. RESULTS: The results show that the trained data-driven stochastic model can well fit the historical time series of P. vivax prevalence data in both counties from 2007 to 2010. Moreover, with well-trained model parameters, the proposed one-step-ahead prediction method can achieve better performances than that of the seasonal autoregressive integrated moving average model with respect to predicting the number of future malaria infections. CONCLUSIONS: By involving dynamically changing impact factors, the proposed data-driven model together with the PMCMC method can successfully (i) depict the dynamics of malaria transmission, and (ii) achieve accurate one-step-ahead prediction about malaria infections. Such a data-driven method has the potential to investigate malaria transmission dynamics in other malaria-endemic countries/regions.


Assuntos
Malária Vivax/transmissão , Plasmodium vivax/fisiologia , China/epidemiologia , Humanos , Malária Vivax/epidemiologia , Modelos Teóricos , Estações do Ano
8.
EClinicalMedicine ; 22: 100354, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32313879

RESUMO

BACKGROUND: COVID-19 has spread to 6 continents. Now is opportune to gain a deeper understanding of what may have happened. The findings can help inform mitigation strategies in the disease-affected countries. METHODS: In this work, we examine an essential factor that characterizes the disease transmission patterns: the interactions among people. We develop a computational model to reveal the interactions in terms of the social contact patterns among the population of different age-groups. We divide a city's population into seven age-groups: 0-6 years old (children); 7-14 (primary and junior high school students); 15-17 (high school students); 18-22 (university students); 23-44 (young/middle-aged people); 45-64 years old (middle-aged/elderly people); and 65 or above (elderly people). We consider four representative settings of social contacts that may cause the disease spread: (1) individual households; (2) schools, including primary/high schools as well as colleges and universities; (3) various physical workplaces; and (4) public places and communities where people can gather, such as stadiums, markets, squares, and organized tours. A contact matrix is computed to describe the contact intensity between different age-groups in each of the four settings. By integrating the four contact matrices with the next-generation matrix, we quantitatively characterize the underlying transmission patterns of COVID-19 among different populations. FINDINGS: We focus our study on 6 representative cities in China: Wuhan, the epicenter of COVID-19 in China, together with Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen, which are five major cities from three key economic zones. The results show that the social contact-based analysis can readily explain the underlying disease transmission patterns as well as the associated risks (including both confirmed and unconfirmed cases). In Wuhan, the age-groups involving relatively intensive contacts in households and public/communities are dispersedly distributed. This can explain why the transmission of COVID-19 in the early stage mainly took place in public places and families in Wuhan. We estimate that Feb. 11, 2020 was the date with the highest transmission risk in Wuhan, which is consistent with the actual peak period of the reported case number (Feb. 4-14). Moreover, the surge in the number of new cases reported on Feb. 12 and 13 in Wuhan can readily be captured using our model, showing its ability in forecasting the potential/unconfirmed cases. We further estimate the disease transmission risks associated with different work resumption plans in these cities after the outbreak. The estimation results are consistent with the actual situations in the cities with relatively lenient policies, such as Beijing, and those with strict policies, such as Shenzhen. INTERPRETATION: With an in-depth characterization of age-specific social contact-based transmission, the retrospective and prospective situations of the disease outbreak, including the past and future transmission risks, the effectiveness of different interventions, and the disease transmission risks of restoring normal social activities, are computationally analyzed and reasonably explained. The conclusions drawn from the study not only provide a comprehensive explanation of the underlying COVID-19 transmission patterns in China, but more importantly, offer the social contact-based risk analysis methods that can readily be applied to guide intervention planning and operational responses in other countries, so that the impact of COVID-19 pandemic can be strategically mitigated. FUNDING: General Research Fund of the Hong Kong Research Grants Council; Key Project Grants of the National Natural Science Foundation of China.

9.
Parasit Vectors ; 12(1): 474, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31610804

RESUMO

BACKGROUND: The global spread of mosquito-borne diseases (MBD) has presented increasing challenges to public health. The transmission of MBD is mainly attributable to the biting behaviors of female mosquitoes. However, the ecological pattern of hourly host-seeking behavior in Aedes albopictus and its association with climatic variables are still not well understood, especially for a precise requirement for establishing an effective risk prediction system of MBD transmission. METHODS: Mosquito samples and data on mosquito hourly density and site-specific climatic variables, including temperature, relative humidity, illuminance and wind speed, were collected simultaneously in urban outdoor environments in Guangzhou during 2016-2018. Kernel regression models were used to assess the temporal patterns of hourly host-seeking behavior in mosquito populations, and negative binomial regression models in the Bayesian framework were used to investigate the associations of host-seeking behavior with climatic variables. RESULTS: Aedes albopictus was abundant, constituting 82% (5569/6790) of the total collected mosquitoes. Host-seeking behavior in Ae. albopictus varied across time and was significantly influenced by climatic variables. The predicted hourly mosquito densities showed non-linear relationships with temperature and illuminance, whereas density increased with relative humidity but generally decreased with wind speed. The range of temperature estimates for female biting was 16.4-37.1 °C, peaking at 26.5 °C (95% credible interval: 25.3-28.1). During the favorable periods, biting behavior of female Ae. albopictus was estimated to occur frequently all day long, presenting a bimodal distribution with peaks within 2-3 h around both dawn and dusk (05:00-08:00 h and 16:00-19:00 h). Moreover, a short-term association in hourly density between the females and males was found. CONCLUSIONS: Our field-based modeling study reveals that hourly host-seeking behavior of Ae. albopictus exhibits a complex pattern, with hourly variation constrained significantly by climatic variables. These findings lay a foundation for improving MBD risk assessments as well as practical strategies for vector control. For instances of all-day-long frequent female biting during the favorable periods in Guangzhou, effective integrated mosquito control measures must be taken throughout the day and night.


Assuntos
Aedes/fisiologia , Clima , Comportamento de Busca por Hospedeiro/fisiologia , Mosquitos Vetores/fisiologia , Doenças Transmitidas por Vetores/prevenção & controle , Aedes/genética , Animais , Teorema de Bayes , Distribuição Binomial , China/epidemiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Umidade , Mordeduras e Picadas de Insetos/epidemiologia , Luz , Masculino , Mitocôndrias/enzimologia , Controle de Mosquitos , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase , Densidade Demográfica , Chuva , Análise de Regressão , Estações do Ano , Temperatura , Fatores de Tempo , Doenças Transmitidas por Vetores/epidemiologia , Vento
10.
Artigo em Inglês | MEDLINE | ID: mdl-30387739

RESUMO

Co-evolution exists ubiquitously in biological systems. At the molecular level, interacting proteins, such as ligands and their receptors and components in protein complexes, co-evolve to maintain their structural and functional interactions. Many proteins contain multiple functional domains interacting with different partners, making co-evolution of interacting domains occur more prominently. Multiple methods have been developed to predict interacting proteins or domains within proteins by detecting their co-variation. This strategy neglects the fact that interacting domains can be highly co-conserved due to their functional interactions. Here we report a novel algorithm COPCOP to detect signals of both co-positive selection (co-variation) and co-purifying selection (co-conservation). Results show that our algorithm performs well and outperforms the popular co-variation analysis program CAPS. We also design and implement a multi-level parallel acceleration strategy for COPCOP based on Tianhe-2 CPU-MIC heterogeneous supercomputer system to meet the need of large-scale co-evolutionary domain detection.

11.
Infect Dis Poverty ; 7(1): 97, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305184

RESUMO

BACKGROUND: In China since the first human infection of avian influenza A (H7N9) virus was identified in 2013, it has caused serious public health concerns due to its wide spread and high mortality rate. Evidence shows that bird migration plays an essential role in global spread of avian influenza viruses. Accordingly, in this paper, we aim to identify key bird species and geographical hotspots that are relevant to the transmission of avian influenza A (H7N9) virus in China. METHODS: We first conducted phylogenetic analysis on 626 viral sequences of avian influenza A (H7N9) virus isolated in chicken, which were collected from the Global Initiative on Sharing All Influenza Data (GISAID), to reveal geographical spread and molecular evolution of the virus in China. Then, we adopted the cross correlation function (CCF) to explore the relationship between the identified influenza A (H7N9) cases and the spatiotemporal distribution of migratory birds. Here, the spatiotemporal distribution of bird species was generated based on bird observation data collected from China Bird Reports, which consists of 157 272 observation records about 1145 bird species. Finally, we employed a kernel density estimator to identify geographical hotspots of bird habitat/stopover that are relevant to the influenza A (H7N9) infections. RESULTS: Phylogenetic analysis reveals the evolutionary and geographical patterns of influenza A (H7N9) infections, where cases in the same or nearby municipality/provinces are clustered together with small evolutionary differences. Moreover, three epidemic waves in chicken along the East Asian-Australasian flyway in China are distinguished from the phylogenetic tree. The CCF analysis identifies possible migratory bird species that are relevant to the influenza A(H7N9) infections in Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, and Guangdong in China, where the six municipality/provinces account for 91.2% of the total number of isolated H7N9 cases in chicken in GISAID. Based on the spatial distribution of identified bird species, geographical hotspots are further estimated and illustrated within these typical municipality/provinces. CONCLUSIONS: In this paper, we have identified key bird species and geographical hotspots that are relevant to the spread of influenza A (H7N9) virus. The results and findings could provide sentinel signal and evidence for active surveillance, as well as strategic control of influenza A (H7N9) transmission in China.


Assuntos
Aves/virologia , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , China/epidemiologia , Genes Virais , Geografia , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Filogenia , Filogeografia
12.
BMC Bioinformatics ; 19(Suppl 9): 282, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30367570

RESUMO

BACKGROUND: Novel sequence motifs detection is becoming increasingly essential in computational biology. However, the high computational cost greatly constrains the efficiency of most motif discovery algorithms. RESULTS: In this paper, we accelerate MEME algorithm targeted on Intel Many Integrated Core (MIC) Architecture and present a parallel implementation of MEME called MIC-MEME base on hybrid CPU/MIC computing framework. Our method focuses on parallelizing the starting point searching method and improving iteration updating strategy of the algorithm. MIC-MEME has achieved significant speedups of 26.6 for ZOOPS model and 30.2 for OOPS model on average for the overall runtime when benchmarked on the experimental platform with two Xeon Phi 3120 coprocessors. CONCLUSIONS: Furthermore, MIC-MEME has been compared with state-of-arts methods and it shows good scalability with respect to dataset size and the number of MICs. Source code: https://github.com/hkwkevin28/MIC-MEME .


Assuntos
Biologia Computacional/métodos , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Software , Algoritmos , Gráficos por Computador , Bases de Dados Genéticas , Humanos , Internet , Fatores de Transcrição/metabolismo
13.
BMC Bioinformatics ; 19(Suppl 4): 98, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29745832

RESUMO

BACKGROUND: Frequent subgraphs mining is a significant problem in many practical domains. The solution of this kind of problem can particularly used in some large-scale drug molecular or biological libraries to help us find drugs or core biological structures rapidly and predict toxicity of some unknown compounds. The main challenge is its efficiency, as (i) it is computationally intensive to test for graph isomorphisms, and (ii) the graph collection to be mined and mining results can be very large. Existing solutions often require days to derive mining results from biological networks even with relative low support threshold. Also, the whole mining results always cannot be stored in single node memory. RESULTS: In this paper, we implement a parallel acceleration tool for classical frequent subgraph mining algorithm called cmFSM. The core idea is to employ parallel techniques to parallelize extension tasks, so as to reduce computation time. On the other hand, we employ multi-node strategy to solve the problem of memory constraints. The parallel optimization of cmFSM is carried out on three different levels, including the fine-grained OpenMP parallelization on single node, multi-node multi-process parallel acceleration and CPU-MIC collaborated parallel optimization. CONCLUSIONS: Evaluation results show that cmFSM clearly outperforms the existing state-of-the-art miners even if we only hold a few parallel computing resources. It means that cmFSM provides a practical solution to frequent subgraph mining problem with huge number of mining results. Specifically, our solution is up to one order of magnitude faster than the best CPU-based approach on single node and presents a promising scalability of massive mining tasks in multi-node scenario. More source code are available at:Source Code: https://github.com/ysycloud/cmFSM .


Assuntos
Algoritmos , Mineração de Dados , Avaliação Pré-Clínica de Medicamentos , Software , Bases de Dados como Assunto
14.
Sci Rep ; 7(1): 16355, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180687

RESUMO

Understanding individuals' voluntary vaccinating behaviors plays essential roles in making vaccination policies for many vaccinepreventable diseases. Usually, individuals decide whether to vaccinate through evaluating the relative cost of vaccination and infection according to their own interests. Mounting evidence shows that the best vaccine coverage level for the population as a whole can hardly be achieved due to the effects of herd immunity. In this paper, taking into consideration the herd immunity threshold, we present an evolutionary N-person threshold game, where individuals can dynamically adjust their vaccinating strategies and their payoffs depend nonlinearly on whether or not the herd immunity threshold is reached. First, in well-mixed populations, we analyze the relationships at equilibrium among the fraction of vaccinated individuals, the population size, the basic reproduction number and the relative cost of vaccination and infection. Then, we carry out simulations on four types of complex networks to explore the evolutionary dynamics of the N-person threshold game in structured populations. Specifically, we investigate the effects of disease severity and population structure on the vaccine coverage for different relative costs of vaccination and infection. The results and findings can offer new insight into designing incentive-based vaccination policies for disease intervention and control.


Assuntos
Comportamento de Escolha , Jogos Experimentais , Imunidade Coletiva , Modelos Teóricos , Vacinação , Algoritmos , Simulação por Computador , Humanos , Densidade Demográfica , Vigilância da População , Cobertura Vacinal
15.
Infect Dis Poverty ; 6(1): 108, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679420

RESUMO

BACKGROUND: In order to achieve the goal of malaria elimination, the Chinese government launched the National Malaria Elimination Programme in 2010. However, as a result of increasing cross-border population movements, the risk of imported malaria cases still exists at the border areas of China, resulting in a potential threat of local transmission. The focus of this paper is to assess the Plasmodium vivax incidences in Tengchong, Yunnan Province, at the border areas of China and Myanmar. METHODS: Time series of P. vivax incidences in Tengchong from 2006 to 2010 are collected from the web-based China Information System for Disease Control and Prevention, which are further separated into time series of imported and local cases. First, the seasonal and trend decomposition are performed on time series of imported cases using Loess method. Then, the impact of climatic factors on the local transmission of P. vivax is assessed using both linear regression models (LRM) and generalized additive models (GAM). Specifically, the notion of vectorial capacity (VCAP) is used to estimate the transmission potential of P. vivax at different locations, which is calculated based on temperature and rainfall collected from China Meteorological Administration. RESULTS: Comparing with Ruili County, the seasonal pattern of imported cases in Tengchong is different: Tengchong has only one peak, while Ruili has two peaks during each year. This may be due to the different cross-border behaviors of peoples in two locations. The vectorial capacity together with the imported cases and the average humidity, can well explain the local incidences of P. vivax through both LRM and GAM methods. Moreover, the maximum daily temperature is verified to be more suitable to calculate VCAP than the minimal and average temperature in Tengchong County. CONCLUSION: To achieve malaria elimination in China, the assessment results in this paper will provide further guidance in active surveillance and control of malaria at the border areas of China and Myanmar.


Assuntos
Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Plasmodium vivax/fisiologia , China/epidemiologia , Doenças Transmissíveis Importadas/parasitologia , Malária Vivax/parasitologia , Mianmar/epidemiologia , Medição de Risco
16.
Sci Rep ; 7(1): 2665, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572623

RESUMO

Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.


Assuntos
Comportamento Social , Meio Social , Rede Social , Vacinação , Simulação por Computador , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Imunidade Coletiva , Modelos Biológicos
17.
PLoS One ; 11(9): e0162781, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611686

RESUMO

Encouraging cooperation among selfish individuals is crucial in many real-world systems, where individuals' collective behaviors can be analyzed using evolutionary public goods game. Along this line, extensive studies have shown that reputation is an effective mechanism to investigate the evolution of cooperation. In most existing studies, participating individuals in a public goods game are assumed to contribute unconditionally into the public pool, or they can choose partners based on a common reputation standard (e.g., preferences or characters). However, to assign one reputation standard for all individuals is impractical in many real-world deployment. In this paper, we introduce a reputation tolerance mechanism that allows an individual to select its potential partners and decide whether or not to contribute an investment to the public pool based on its tolerance to other individuals' reputation. Specifically, an individual takes part in a public goods game only if the number of participants with higher reputation exceeds the value of its tolerance. Moreover, in this paper, an individual's reputation can increase or decrease in a bounded interval based on its historical behaviors. We explore the principle that how the reputation tolerance and conditional investment mechanisms can affect the evolution of cooperation in spatial lattice networks. Our simulation results demonstrate that a larger tolerance value can achieve an environment that promote the cooperation of participants.


Assuntos
Comportamento Cooperativo , Investimentos em Saúde , Algoritmos , Evolução Biológica , Modelos Teóricos
18.
PLoS Negl Trop Dis ; 10(4): e0004633, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27105350

RESUMO

BACKGROUND: Dengue is a serious vector-borne disease, and incidence rates have significantly increased during the past few years, particularly in 2014 in Guangzhou. The current situation is more complicated, due to various factors such as climate warming, urbanization, population increase, and human mobility. The purpose of this study is to detect dengue transmission patterns and identify the disease dispersion dynamics in Guangzhou, China. METHODOLOGY: We conducted surveys in 12 districts of Guangzhou, and collected daily data of Breteau index (BI) and reported cases between September and November 2014 from the public health authority reports. Based on the available data and the Ross-Macdonald theory, we propose a dengue transmission model that systematically integrates entomologic, demographic, and environmental information. In this model, we use (1) BI data and geographic variables to evaluate the spatial heterogeneities of Aedes mosquitoes, (2) a radiation model to simulate the daily mobility of humans, and (3) a Markov chain Monte Carlo (MCMC) method to estimate the model parameters. RESULTS/CONCLUSIONS: By implementing our proposed model, we can (1) estimate the incidence rates of dengue, and trace the infection time and locations, (2) assess risk factors and evaluate the infection threat in a city, and (3) evaluate the primary diffusion process in different districts. From the results, we can see that dengue infections exhibited a spatial and temporal variation during 2014 in Guangzhou. We find that urbanization, vector activities, and human behavior play significant roles in shaping the dengue outbreak and the patterns of its spread. This study offers useful information on dengue dynamics, which can help policy makers improve control and prevention measures.


Assuntos
Dengue/epidemiologia , Surtos de Doenças , Transmissão de Doença Infecciosa , Monitoramento Epidemiológico , Modelos Estatísticos , Aedes/crescimento & desenvolvimento , Animais , China/epidemiologia , Clima , Dengue/transmissão , Previsões , Humanos , Incidência , Dinâmica Populacional , Análise Espaço-Temporal
19.
Malar J ; 14: 216, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013665

RESUMO

BACKGROUND: Geographic variations of an infectious disease characterize the spatial differentiation of disease incidences caused by various impact factors, such as environmental, demographic, and socioeconomic factors. Some factors may directly determine the force of infection of the disease (namely, explicit factors), while many other factors may indirectly affect the number of disease incidences via certain unmeasurable processes (namely, implicit factors). In this study, the impact of heterogeneous factors on geographic variations of Plasmodium vivax incidences is systematically investigate in Tengchong, Yunnan province, China. METHODS: A space-time model that resembles a P. vivax transmission model and a hidden time-dependent process, is presented by taking into consideration both explicit and implicit factors. Specifically, the transmission model is built upon relevant demographic, environmental, and biophysical factors to describe the local infections of P. vivax. While the hidden time-dependent process is assessed by several socioeconomic factors to account for the imported cases of P. vivax. To quantitatively assess the impact of heterogeneous factors on geographic variations of P. vivax infections, a Markov chain Monte Carlo (MCMC) simulation method is developed to estimate the model parameters by fitting the space-time model to the reported spatial-temporal disease incidences. RESULTS: Since there is no ground-truth information available, the performance of the MCMC method is first evaluated against a synthetic dataset. The results show that the model parameters can be well estimated using the proposed MCMC method. Then, the proposed model is applied to investigate the geographic variations of P. vivax incidences among all 18 towns in Tengchong, Yunnan province, China. Based on the geographic variations, the 18 towns can be further classify into five groups with similar socioeconomic causality for P. vivax incidences. CONCLUSIONS: Although this study focuses mainly on the transmission of P. vivax, the proposed space-time model is general and can readily be extended to investigate geographic variations of other diseases. Practically, such a computational model will offer new insights into active surveillance and strategic planning for disease surveillance and control.


Assuntos
Malária Vivax/epidemiologia , Plasmodium vivax/fisiologia , China/epidemiologia , Humanos , Incidência , Malária Vivax/parasitologia , Malária Vivax/transmissão , Modelos Teóricos
20.
PLoS Negl Trop Dis ; 8(2): e2682, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516684

RESUMO

BACKGROUND: The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to another, which are informative and insightful for public health policy makers to accurately predict the patterns of its geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available tempo-spatial patterns of reported cases. METHODOLOGY: We first define a spatial transmission model, which involves representing both the heterogeneous transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations. Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors, including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number of imported cases. PRINCIPAL FINDINGS: We implement our proposed models by focusing on the P. vivax transmission among 62 towns in Yunnan province, People's Republic China, which have been experiencing high malaria transmission in the past years. By conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of individual towns in the geographical spread of P. vivax. CONCLUSION: The demonstrated models have presented a general means for inferring the underlying transmission networks from surveillance data. The inferred networks will offer new insights into how to improve the predictability of P. vivax transmission.


Assuntos
Malária Vivax/epidemiologia , Malária Vivax/transmissão , Modelos Biológicos , Análise Espaço-Temporal , Animais , Anopheles/virologia , China/epidemiologia , Geografia Médica , Humanos , Plasmodium vivax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...