Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 864, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792624

RESUMO

Phosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C). Long-term warming decreased soil total P pools, likely due to higher outputs of P from soils by increasing net plant P uptake and downward transportation of colloidal and particulate P. Warming increased the sorption strength to more recalcitrant soil P fractions (absorbed to iron oxyhydroxides and clays), thereby further reducing bioavailable P in soil solution. As a response, soil microbes enhanced the production of acid phosphatase, though this was not sufficient to avoid decreases of soil bioavailable P and microbial biomass P (and biotic phosphate immobilization). This study therefore highlights how long-term soil warming triggers changes in biotic and abiotic soil P pools and processes, which can potentially aggravate the P constraints of the trees and soil microbes and thereby negatively affect the C sequestration potential of these forests.


Assuntos
Ecossistema , Fósforo , Solo , Florestas , Biomassa , Microbiologia do Solo , Carbono
2.
Glob Chang Biol ; 29(8): 2188-2202, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622092

RESUMO

Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18 O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0-10, 10-20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration-though easy and cheap to measure-is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...