Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(25): e2309557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705855

RESUMO

This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124333, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815297

RESUMO

The aging characteristic components of oil-paper insulation reflect the aging status of the power equipment. In this study, we designed a novel microfluidic chip capable of automatic and rapid extraction of aging components from insulating oil. Combined with Raman spectroscopy technology, it enables simultaneous detection of various aging components. By optimizing the microfluidic chip structural and adopting an optical window encapsulation, it eliminates interference from the Polydimethylsiloxane (PDMS). Measurements and analyses were carried out on multiple oil samples containing three aging products (furfural, acetone, and methanol). The results indicate that this novel microfluidic chip facilitates simultaneous detection of multiple components, significantly improving the detection sensitivity of complex oil. The detection limits for furfural, acetone, and methanol in insulating oil are 0.43 mg/L, 1.04 mg/L, and 2.31 mg/L, respectively. This provides a new approach for the online detection of oil-paper insulation equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA