Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 220: 116009, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154547

RESUMO

The clinic application of doxorubicin (DOX) is severely limited by its severe cardiotoxicity. Tripartite motif-containing protein 16 (TRIM16) has E3 ubiquitin ligase activity and is upregulated in cardiomyocytes under pathological stress, yet its role in DOX-induced cardiotoxicity remains elusive. This study aims to investigate the role and mechanism of TRIM16 in DOX cardiotoxicity. Following TRIM16 overexpression in hearts with AAV9-TRIM16, mice were intravenously administered DOX at a dose of 4 mg/kg/week for 4 weeks to assess the impact of TRIM16 on doxorubicin-induced cardiotoxicity. Transfection of OE-TRIM16 plasmids and siRNA-TRIM16 was performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that DOX challenge elicited a significant upregulation of TRIM16 proteins in cardiomyocytes. TRIM16 overexpression efficiently ameliorated cardiac function while suppressing inflammation, ROS generation, apoptosis and fibrosis provoked by DOX in the myocardium. TRIM16 knockdown exacerbated these alterations caused by DOX in NRCMs. Mechanistically, OE-TRIM16 augmented the ubiquitination and degradation of p-TAK1, thereby arresting JNK and p38MAPK activation evoked by DOX in cardiomyocytes. Furthermore, DOX enhanced the interaction between p-TAK1 and YAP1 proteins, resulting in a reduction in YAP and Nrf2 proteins in cardiomyocytes. OE-TRIM16 elevated YAP levels and facilitated its nuclear translocation, thereby promoting Nrf2 expression and mitigating oxidative stress and inflammation. This effect was nullified by siTRIM16 or TAK1 inhibitor Takinib. Collectively, the current study elaborates that upregulating TRIM16 mitigates DOX-induced cardiotoxicity through anti-inflammation and anti-oxidative stress by modulating TAK1-mediated p38 and JNK as well as YAP/Nrf2 pathways, and targeting TRIM16 may provide a novel strategy to treat DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Ratos , Apoptose , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Inflamação/metabolismo , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
2.
Antioxidants (Basel) ; 12(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759959

RESUMO

Recent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling. Mitochondrial fragmentation in cardiomyocytes was induced by isoprenaline (ISO) and H2O2 challenge, respectively, in vitro. Cardiac remodeling in mice was established by ligating the left anterior descending coronary artery or by chronic ISO challenge, respectively, in vivo. Our results demonstrated that the protein expression of acetylated-p53 (ac-p53) in mitochondria was significantly increased under cell stress conditions, facilitating the dissociation of PHB2-OPA1 complex by binding to prohibitin 2 (PHB2), a molecular chaperone that stabilizes OPA1 in mitochondria. This led to the degradation of the long isoform of OPA1 (L-OPA1) that facilitates mitochondrial fusion and resultant mitochondrial network fragmentation. This effect was abolished by a p53 K371R mutant that failed to bind to PHB2 and impeded the formation of the ac-p53-PHB2 complex. The activation of Flt3 significantly reduced ac-p53 expression in mitochondria via SIRT1, thereby hindering the formation of the ac-p53-PHB2 complex and potentiating the stability of the PHB2-OPA1 complex. This ultimately inhibits L-OPA1 processing and leads to the balancing of mitochondrial dynamics. These findings highlight a novel mechanism by which Flt3 activation mitigates mitochondrial fragmentation and dysfunction through the reduction of L-OPA1 processing by dampening the interaction between ac-p53 and PHB2 in cardiac maladaptive remodeling.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 23(1): 205-6, 2003 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-12940011

RESUMO

In HNO3 medium the fading reaction of arsenazo III oxidated with Cr2O7(2-) was used as to determine trace Cr in fly ash containing Cr. The results show that the fading reaction has high sensitivity in the medium of 3.2 mol.L-1 nitric acid, the molar absorptivity of 3.9 x 10(6) L.mol-1.cm-1 at 520 nm, and Beer's law is obeyed for Cr (VI) in the range of 0.0-40.0 micrograms.L-1. Contents of Cr in fly ash were determined with satisfactory results.


Assuntos
Carbono/química , Cromo/análise , Poluentes Químicos da Água/análise , Carvão Mineral , Cinza de Carvão , Material Particulado , Espectrofotometria/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...