Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12645-12655, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651821

RESUMO

The increased production of plastics is leading to the accumulation of plastic waste and depletion of limited fossil fuel resources. In this context, we report a strategy to create polymers that can undergo controlled depolymerization by linking renewable feedstocks with siloxane bonds. α,ω-Diesters and α,ω-diols containing siloxane bonds were synthesized from an alkenoic ester derived from castor oil and then polymerized with varied monomers, including related biobased monomers. In addition, cyclic monomers derived from this alkenoic ester and hydrosiloxanes were prepared and cyclized to form a 26-membered macrolactone containing a siloxane unit. Sequential ring-opening polymerization of this macrolactone and lactide afforded an ABA triblock copolymer. This set of polymers containing siloxanes underwent programmed depolymerization into monomers in protic solvents or with hexamethyldisiloxane and an acid catalyst. Monomers afforded by the depolymerization of polyesters containing siloxane linkages were repolymerized to demonstrate circularity in select polymers. Evaluation of the environmental stability of these polymers toward enzymatic degradation showed that they undergo enzymatic hydrolysis by a fungal cutinase from Fusarium solani. Evaluation of soil microbial metabolism of monomers selectively labeled with 13C revealed differential metabolism of the main chain and side chain organic groups by soil microbes.


Assuntos
Fusarium , Polimerização , Siloxanas , Siloxanas/química , Óleos de Plantas/química , Polímeros/química , Estrutura Molecular , Hidrolases de Éster Carboxílico
2.
J Am Chem Soc ; 145(39): 21527-21537, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733607

RESUMO

Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.

3.
Science ; 381(6665): 1433-1440, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769088

RESUMO

Functional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.

4.
J Am Chem Soc ; 145(36): 19490-19495, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638874

RESUMO

We report the iridium-catalyzed, stereoselective conversion of secondary alcohols or ketones to anti-1,3-diols by the silylation of secondary C-H bonds γ to oxygen and oxidation of the resulting oxasilolane. The silylation of secondary C-H bonds in secondary silyl ethers derived from alcohols or ketones is enabled by a catalyst formed from a simple bisamidine ligand. The silylation occurs with high selectivity at a secondary C-H bond γ to oxygen over distal primary or proximal secondary C-H bonds. Initial mechanistic investigations suggest that the source of the newly achieved reactivity is a long catalyst lifetime resulting from the high binding constant of the strongly electron-donating bisamidine ligand.

5.
Science ; 377(6614): 1561-1566, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173865

RESUMO

The conversion of polyolefins to monomers would create a valuable carbon feedstock from the largest fraction of waste plastic. However, breakdown of the main chains in these polymers requires the cleavage of carbon-carbon bonds that tend to resist selective chemical transformations. Here, we report the production of propylene by partial dehydrogenation of polyethylene and tandem isomerizing ethenolysis of the desaturated chain. Dehydrogenation of high-density polyethylene with either an iridium-pincer complex or platinum/zinc supported on silica as catalysts yielded dehydrogenated material containing up to 3.2% internal olefins; the combination of a second-generation Hoveyda-Grubbs metathesis catalyst and [PdP(tBu)3(µ-Br)]2 as an isomerization catalyst selectively degraded this unsaturated polymer to propylene in yields exceeding 80%. These results show promise for the application of mild catalysis to deconstruct otherwise stable polyolefins.


Assuntos
Alcenos , Etilenos , Polietileno , Gerenciamento de Resíduos , Alcenos/síntese química , Carbono/química , Catálise , Etilenos/química , Irídio , Platina , Polienos , Polietileno/química , Dióxido de Silício , Gerenciamento de Resíduos/métodos
6.
J Org Chem ; 84(11): 7434-7442, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070919

RESUMO

Bulky ß-diketones have rarely exceeded dipivaloylmethane (DPM) in steric demand, largely due to synthetic limitations of the Claisen condensation. This work demonstrates hindered acid chlorides to be selective electrophiles in noncoordinating solvents for condensations with enolates. An improved synthesis of DPM is described (90% yield), and crowded ß-diketones featuring bulky o-biphenyl or m-terphenyl fragments were prepared in good to excellent yields. These compounds are anticipated to have a steric profile far greater than that of DPM. General reaction conditions and mechanistic considerations are included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...