Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 40(3): 231-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38180297

RESUMO

Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Glicólise/genética , Proliferação de Células/genética , Glucose , MicroRNAs/genética , Linhagem Celular Tumoral
2.
Hum Exp Toxicol ; 29(4): 329-37, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20144956

RESUMO

To investigate the role of nitric oxide (NO) in acute lung inflammation and injury secondary to acute necrotizing pancreatitis (ANP), 5% sodium taurocholate was retrogradely injected into the biliopancreatic duct of rats to ANP model. These ANP rats were given L-Arginine (L-Arg, 100 mg/kg), L-NAME (10 mg/kg), or their combination by intraperitoneal injection 30 min prior to ANP induction. At 1, 3, 6, and 12 hours after ANP induction, lung NO production, and inducible NO synthase (iNOS) expression were measured. Lung histopathological changes, bronchoalveolar lavage (BAL) protein concentration, proinflammatory mediators tumor necrotic factor alpha (TNF-alpha), and lung tissue myeloperoxidase (MPO) activity were examined. Results showed that NO production and iNOS mRNA expression in alveolar macrophages (AMs) were significantly increased along with significant increases in lung histological abnormalities and BAL proteins in the ANP group, all of which were further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These markers were slightly attenuated by pretreatment with combination of L-Arg + L-NAME, suggesting that NO is required for initiating the acute lung damage in ANP rats, and also that L-Arg-enhanced lung injury is mediated by its NO generation rather than its direct effect. MPO activity and TNF-alpha expression in lung were upregulated in the ANP rats and further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These results suggest that overproduction of NO mediated by iNOS in the lung is required for the acute lung inflammation and damage secondary to ANP.


Assuntos
Lesão Pulmonar Aguda/etiologia , Pulmão/metabolismo , Óxido Nítrico/metabolismo , Pancreatite Necrosante Aguda/complicações , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Arginina/administração & dosagem , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/imunologia , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Necrosante Aguda/patologia , Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido Taurocólico , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...