Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1390140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828408

RESUMO

Objective: The aim of this study was to identify potential causal cytokines in thymic malignancies and benign tumors from the FinnGen database using Mendelian randomization (MR). Methods: In this study, data from genome-wide association studies (GWAS) of 91 cytokines were used as exposure factors, and those of thymic malignant tumors and thymic benign tumors were the outcome variables. Two methods were used to determine the causal relationship between exposure factors and outcome variables: inverse variance weighting (IVW) and MR-Egger regression. Sensitivity analysis was performed using three methods, namely, the heterogeneity test, the pleiotropy test, and the leave-one-out test. Results: There was a causal relationship between the expression of fibroblast growth factor 5, which is a risk factor for thymic malignant tumors, and thymic malignant tumors. C-C motif chemokine 19 expression, T-cell surface glycoprotein CD5 levels, and interleukin-12 subunit beta levels were causally related to thymic malignant tumors and were protective. Adenosine deaminase levels, interleukin-10 receptor subunit beta expression, tumor necrosis factor (TNF)-related apoptosis-inducing ligand levels, and TNF-related activation-induced cytokine levels showed a causal relationship with thymic benign tumors, which are its risk factors. Caspase 8 levels, C-C motif chemokine 28 levels, interleukin-12 subunit beta levels, latency-associated peptide transforming growth factor beta 1 levels, and programmed cell death 1 ligand 1 expression showed a causal relationship with thymic benign tumors, which are protective factors. Sensitivity analysis showed no heterogeneity. Conclusion: Cytokines showed a causal relationship with benign and malignant thymic tumors. Interleukin-12 subunit beta is a common cytokine that affects malignant and benign thymic tumors.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteômica , Neoplasias do Timo , Humanos , Citocinas/metabolismo , Citocinas/genética , Neoplasias do Timo/genética , Proteômica/métodos , Biomarcadores Tumorais/genética , Fatores de Risco
2.
Artigo em Inglês | MEDLINE | ID: mdl-38516928

RESUMO

Interleukin (IL)-4 and IL-13 are the main effectors of innate lymphoid cells (ILC2) of the type 2 innate immune response, which can carry out specific signal transmission between multiple cells in the tumor immune microenvironment. IL-4 and IL-13 mediate signal transduction and regulate cellular functions in a variety of solid tumors through their shared receptor chain, the transmembrane heterodimer interleukin-4 receptor alpha/interleukin-13 receptor alpha-1 (type II IL-4 receptor). IL-4, IL-13, and their receptors can induce the formation of a variety of malignant tumors and play an important role in their progression, growth, and tumor immunity. In order to explore possible targets for lung cancer prediction and treatment, this review summarizes the characteristics and signal transduction pathways of IL-4 and IL-13, and their respective receptors, and discusses in depth their possible role in the occurrence and development of lung cancer.

3.
Mol Clin Oncol ; 20(4): 28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414512

RESUMO

Lung cancer is the malignancy with the highest global mortality rate and imposes a substantial burden on society. The increasing popularity of lung cancer screening has led to increasing number of patients being diagnosed with pulmonary nodules due to their potential for malignancy, causing considerable distress in the affected population. However, the diagnosis and treatment of sub-centimeter grade pulmonary nodules remain controversial. The evolution of genetic detection technology and the development of targeted drugs have positioned the diagnosis and treatment of lung cancer in the precision medicine era, leading to a marked improvement in the survival rate of patients with lung cancer. It has been established that lung cancer driver genes serve a key role in the development and progression of sub-centimeter lung cancer. The present review aimed to consolidate the findings on genes associated with sub-centimeter lung cancer, with the intent of serving as a reference for future studies and the personalized management of sub-centimeter lung cancer through genetic testing.

4.
Neoplasia ; 46: 100950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976568

RESUMO

OBJECTIVE: This study aimed to investigate the causal relationship between mitochondrial biological function and lung cancer, including its subtypes, via MR. METHODS: SNPs significantly associated with lung cancer and its subtypes were employed as instrumental variables. MR-Egger regression, simple mode, weighted mode, simple median, and weighted median, were utilized to determine the causal relationship between the exposure factor and the occurrence of lung cancer and its subtypes. RESULTS: NADH dehydrogenase (ubiquinone) flavoprotein 2 and transmembrane protein 70 were found to have a causal relationship with lung adenocarcinoma, acting as protective factors. The causal relationship between mitochondrial import inner membrane translocase subunit and NADH dehydrogenase (ubiquinone) iron-sulfur protein 4 and small-cell lung cancer was established as a risk factor. NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8 exhibited a causal relationship with small-cell lung cancer, acting as a protective factor. Furthermore, NAD-dependent protein deacylase sirtuin-5 was causally linked to lung squamous cell carcinoma, serving as a protective factor. A funnel plot demonstrated the symmetrical distribution of the SNPs. Thew pleiotroy test (P > 0.05) and "leave-one-out" test validated the relative stability of the results. CONCLUSION: This study established a causal relationship between mitochondrial biological function and lung cancer, including its subtypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/genética , Complexo I de Transporte de Elétrons/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Carcinoma de Pequenas Células do Pulmão/genética , Polimorfismo de Nucleotídeo Único
5.
Front Immunol ; 14: 1256574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035086

RESUMO

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has had a significant impact on global social and economic stability. To combat this, researchers have turned to omics approaches, particularly epitranscriptomics, to limit infection and develop effective therapeutic strategies. Multi-omics can provide the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes. Epitranscriptomics focuses on the mechanisms of gene transcription in cells and tissues and the relationship between genetic material and epigenetic regulation. This review highlights the role of post-transcriptional regulation in SARS-CoV-2, which affect various processes such as virus infection, replication, immunogenicity, and pathogenicity. The review also explains the formation mechanism of post-transcriptional modifications and how they can be regulated to combat viral infection and pathogenicity.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Epigênese Genética , Pandemias , Virulência
6.
Front Immunol ; 14: 1276194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901241

RESUMO

Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos
7.
Biosens Bioelectron ; 240: 115663, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678060

RESUMO

MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal "off-on" mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET regulated-sensing platform consisted of NiMn-LDHs nanoflowers, the artificially assembled phospholipid bilayers and hairpin DNA-labeled Eu-doped MoS2 QDs. Firstly, Eu-doped MoS2 QDs with high quantum efficiency were prepared as the ECL-RET donors. And NiMn-layer double hydroxides (LDHs) nanoflowers with wide UV-vis absorption spectra as the ECL-RET acceptors. Secondly, due to the hairpin DNA structure, the closed distance between ECL-RET donor-acceptor pair can quench the luminescence signal of Eu-doped MoS2 QDs. When miRNA-150-5p was captured, the hairpin DNA structure changed to a rodlike configuration and enlarged the distance between Eu-doped MoS2 QDs and NiMn-LDHs. As a result, the recovery of ECL signal can be observed as a signal "turn off-on" mode. Furthermore, the hydrophilicity of the lipid bilayer can reduce the nonspecific adsorption and improve the flexibility of the hairpin DNA efficiently. Therefore, based on the ECL-RET regulation strategy, the biosensor was employed to detect miRNA-150-5p from 10 fM to 1 nM with a detection limit of 1.5 fM. The constructed biosensor can effectively differentiate TNBC patient tumor and healthy breast fibroadenoma. The ECL-RET regulation strategy provided a new biosensing pathway for ultrasensitive detection of biomolecules and promoted the development of diagnosis and treatment of TNBC.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Molibdênio , Transferência de Energia , MicroRNAs/genética
8.
Talanta ; 265: 124875, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393716

RESUMO

In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect the miRNA-522 in the tumor tissues of triple-negative breast cancer (TNBC) patients. Au NPs/Zn MOF heterostructure was obtained by in situ growth and used as novel luminescence probe. Firstly, zinc-metal organic framework nanosheets (Zn MOF NSs) were synthesized with Zn2+ as the central metal ion and 2-aminoterephthalic acid (NH2-BDC) as the ligand. 2D MOF nanosheets with ultra-thin layered structure and relatively large specific surface areas can enhance the catalytic activity in the ECL generation. Furthermore, the electron transfer capacity and the electrochemical active surface area of MOF were greatly improved by the growth of Au NPs. Therefore, Au NPs/Zn MOF heterostructure showed the significant electrochemical activity in the sensing process. In addition, the magnetic Fe3O4@SiO2@Au microspheres were used as capture units in the magnetic separation step. The magnetic spheres with hairpin aptamer H1 can capture target gene. Then the captured miRNA-522 triggered the target catalyzed hairpin assembly (CHA) sensing process and linked Au NPs/Zn MOF heterostructure. The concentration of miRNA-522 can be quantified by the ECL signal enhancement of the Au NPs/Zn MOF heterostructure. Due to the high catalytic activity of Au NPs/Zn MOF heterostructure and their unique structural and electrochemical properties, the prepared ECL sensor achieved high-sensitive detection of miRNA-522 in the range of 1 fM to 0.1 nM with the detection limit of 0.3 fM. This strategy can provide a potential alternative for miRNA detection in medical research and clinical diagnosis of triple negative breast cancer.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Zinco/química , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Estruturas Metalorgânicas/química , Dióxido de Silício , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção , Nanopartículas Metálicas/química , Ouro/química
9.
Imeta ; 2(4): e142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38868232

RESUMO

Conceptual diagram for the labile organic carbon (OC) fractions mediating microbial assembly processes during long-term vegetation succession.

10.
Front Oncol ; 12: 1006131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568248

RESUMO

Novel treatment options for pancreatic cancer are desperately needed. De-regulated kinases can be regularly detected in pancreatic cancer. Multiple pathway inhibitors were developed to exploit these features, among them selective inhibitors of the c-Jun N-terminal kinase isoforms 1 and 2 (JNK1 and 2). We evaluated the effectiveness of four different JNK inhibitors on pancreatic cancer cell lines. Cell mobility and migration were evaluated in scratch assay and Boyden chamber assay. Mechanism of cell death was analyzed via apoptosis assays in FACS and immunoblotting as well as cell cycle analysis via FACS, and qPCR. JNK2 knockout cells were generated using siRNA transfection. Among the inhibitors, JNK inhibitor IX (JNK-in-IX), designed as specific inhibitor against JNK2 was proven highly effective in inhibiting cell growth, mobility and migration. We were able to show that JNK-in-IX caused DNA damage resulting in G2 arrest mediated through p53 and p21. Interestingly, JNK-in-IX acted independently of its primary target JNK2. In summary, JNK-in-IX was shown highly effective in pancreatic cancer. This study underlines the need for modeling systems in testing therapeutic options as JNK2 was previously not indicated as a potential target.

11.
J Am Chem Soc ; 144(47): 21772-21782, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36378111

RESUMO

Atomic layer deposition (ALD) is a technologically important method to grow thin films with high conformality and excellent thickness control from vapor phase precursors. The development of new thermal ALD processes can be limited by precursor reactivity and stability: reaction temperature and precursor design are among the few variables available to achieve higher reactivity in gas-phase reactions, unlike in solution synthesis, where the use of solvent and/or a catalyst can promote a desired reaction. To bridge this synthesis gap between vapor-phase and solution-phase, we demonstrate the use of an ultrathin coating layer of a vapor phase-compatible solvent─an ionic liquid (IL)─on our growth substrate to perform ALD of SnO. Successful SnO deposition is achieved using tin acetylacetonate and water, a process that otherwise would require a stronger counter-reactant such as ozone. The presence of the layer of IL allows a solvent-mediated reaction mechanism to take place on the growth substrate surface. We report a growth per cycle of 0.67 Å/cycle at a deposition temperature of 100 °C in an IL comprising 1-ethyl-3-methylimidazolium hydrogen sulfate. Characterization of the ALD films confirms the SnO film composition, and 1H and 13C NMR are used to probe the solvent-mediated ALD reaction, suggesting a solvent-mediated addition-elimination-type mechanism which breaks a C-C bond in acetylacetonate to form acetone and acetate. Density functional theory calculations show that the IL solvent is beneficial to the proposed solvent-mediated mechanism by lowering the C-C bond cleavage energetics of acetylacetonate compared to the vapor phase. A general class of ligand modification reactions for thermal ALD is thus introduced in this work.

12.
Front Immunol ; 13: 923387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203586

RESUMO

At the end of 2019, the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, seriously damaged world public health security. Several protein markers associated with virus infection have been extensively explored to combat the ever-increasing challenge posed by SARS-CoV-2. The proteomics of COVID-19 deepened our understanding of viral particles and their mechanisms of host invasion, providing us with information on protein changes in host tissues, cells and body fluids following infection in COVID-19 patients. In this review, we summarize the proteomic studies of SARS-CoV-2 infection and review the current understanding of COVID-19 in terms of the quantitative and qualitative proteomics of viral particles and host entry factors from the perspective of protein pathological changes in the organism following host infection.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Teste para COVID-19 , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Prognóstico , Proteômica , SARS-CoV-2
13.
Artigo em Inglês | MEDLINE | ID: mdl-35653232

RESUMO

The development of new resist materials is vital to fabrication techniques for next-generation microelectronics. Inorganic resists are promising candidates because they have higher etch resistance, are more impervious to pattern collapse, and are more absorbing of extreme ultraviolet (EUV) radiation than organic resists. However, there is limited understanding about how they behave under irradiation. In this work, a Hf-based hybrid thin film resist, known as "hafnicone", is deposited from the vapor-phase via molecular layer deposition (MLD), and its electron-beam and deep-ultraviolet (DUV)-induced patterning mechanism is explored. The hafnicone thin films are deposited at 100 °C by using the Hf precursor tetrakis(dimethylamido)hafnium(IV) and the organic precursor ethylene glycol. E-beam lithography, scanning electron microscopy, and profilometry are used to investigate the resist performance of hafnicone. With 3 M HCl as the developer, hafnicone behaves as a negative tone resist which exhibits a sensitivity of 400 µC/cm2 and the ability to resolve 50 nm line widths. The resist is characterized via X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) to investigate the patterning mechanism, which is described in the context of classical nucleation theory. This study of hafnicone hybrid MLD demonstrates the ability for the bottom-up vapor deposition of inorganic resists to be utilized in advanced e-beam and DUV lithographic techniques.

14.
Foods ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741944

RESUMO

Zanthoxylum bungeanum Maxim. (Z. bungeanum) has attracted attention for its rich aroma. The aroma of Z. bungeanum is mainly volatile terpenes synthesized by plant terpene metabolic pathways. However, there is little information on Z. bungeanum terpene metabolic gene. In this study, the coding sequence of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and farnesyl pyrophosphate synthase (FPS) were cloned from Z. bungeanum cv. 'Fengxiandahongpao.' ZbDXS and ZbFPS genes from Z. bungeanum with CDS lengths of 2172 bp and 1029 bp, respectively. The bioinformatics results showed that Z. bungeanum was closely related to citrus, and it was deduced that ZbFPS were hydrophilic proteins without the transmembrane domain. Subcellular localization prediction indicated that ZbDXS was most likely to be located in chloroplasts, and ZbFPS was most likely to be in mitochondria. Meanwhile, the 3D protein structure showed that ZbDXS and ZbFPS were mainly composed of α-helices, which were folded into a single domain. In vitro enzyme activity experiments showed that purified proteins ZbDXS and ZbFPS had the functions of DXS enzyme and FPS enzyme. Transient expression of ZbDXS and ZbFPS in tobacco significantly increased tobacco's terpene content. Moreover, ZbDXS and ZbFPS were expressed in different tissues of Z. bungeanum, and the relative expression of the two genes was the highest in fruits. Therefore, this suggests that ZbDXS and ZbFPS are positively related to terpene synthesis. This study could provide reference genes for improving Z. bungeanum breeding as well as for the Rutaceae research.

15.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409019

RESUMO

In search of new therapies for pancreatic cancer, cytokine pathways have attracted increasing interest in recent years. Cytokines play a vital role in the crosstalk between tumour cells and the tumour microenvironment. The related inflammatory cytokines IL-4 and IL-13 can regularly be detected at increased levels in the microenvironment of pancreatic cancer. They share a receptor heterodimer consisting of IL-4Rα and IL-13Rα1. While IL-4Rα induces a more oncogenic phenotype, the role of IL-13Rα1 was yet to be determined. ShRNA-based knockdown of IL-13Rα1 was performed in Capan-1 and MIA PaCa-2. We assessed cell growth and migratory capacities under the influence of IL-13Rα1. Pathway alterations were detected by immunoblot analysis. We now have demonstrated that the loss of IL-13Rα1 induces apoptosis in pancreatic cancer cells. This was associated with an epithelial-to-mesenchymal transition. Loss of IL-13Rα1 also abolished the effects of exogenous IL-4 and IL-13 stimulation. Interestingly, in wild type cells, cytokine stimulation caused a similar increase in migratory capacities as after IL-13Rα1 knockdown. Overall, our results indicate the vital role of IL-13Rα1 in the progression of pancreatic cancer. The differential expression of IL-4Rα and IL-13Rα1 has to be taken into account when considering a cytokine-targeted therapy in pancreatic cancer.


Assuntos
Interleucina-13 , Neoplasias Pancreáticas , Apoptose , Citocinas/metabolismo , Humanos , Interleucina-13/farmacologia , Subunidade alfa1 de Receptor de Interleucina-13/genética , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Cancer Gene Ther ; 29(1): 73-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526844

RESUMO

The c-Jun N-terminal protein kinases (JNKs) JNK1 and JNK2 can act as either tumor suppressors or pro-oncogenic kinases in human cancers. The isoform-specific roles for JNK1 and JNK2 in human pancreatic cancer are still unclear, the question which should be addressed in this project. Human pancreatic cancer cell lines MIA PaCa-2 and PANC-1 clones were established either expressing either JNK1 or -2 shRNA in a stable manner. Basal anchorage-dependent and -independent cell growth, single-cell movement, and invasion using the Boyden chamber assay were analyzed. Xenograft growth was assessed using an orthotopic mouse model. All seven tested pancreatic cancer cell lines expressed JNKs as did human pancreatic cancer samples determined by immunohistochemistry. Pharmacological, unspecific JNK inhibition (SP600125) reduced cell growth of all cell lines but PANC-1. Especially inhibition of JNK2 resulted in overall increased oncogenic potential with increased proliferation and invasion, associated with alterations in cytoskeleton structure. Specific inhibition of JNK1 revealed opposing functions. Overall, JNK1 and JNK2 can exert different functions in human pancreatic cancer and act as counter players for tumor invasion. Specifically modulating the activity of JNKs may be of potential therapeutic interest in the future.


Assuntos
Proteína Quinase 8 Ativada por Mitógeno , Proteína Quinase 9 Ativada por Mitógeno , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/genética , Fosforilação
17.
Talanta ; 237: 122969, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736693

RESUMO

In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect miRNA-210 in the serum of triple negative breast cancer (TNBC) patients. The luminous MoS2 nanosheets were synthesized via the solvothermal method and served as ECL emitters for the first time. As a result, the ECL properties of as-prepared MoS2 nanosheets were significantly improved. Furthermore, the biomimetic magnetic vesicles were used as capture platform in the ECL sensing strategy. Due to the highly efficient fluidity and magnetic property, the biomimetic vesicles with hairpin aptamers can capture target gene in the serum. After magnetic separation, the captured miRNA-210 can trigger the target-catalyzed hairpin assembly (CHA) sensing process on the magnetic electrode and hybridize MoS2 nanosheets labeled probe DNA. The concentration of miRNA-210 can be quantified by the ECL enhancement of the MoS2 nanosheets. This approach has achieved the sensitive detection for miRNA-210 in a range from 1 fM to 100 pM with the detection limit of 0.3 fM. The luminous MoS2 nanosheets-based ECL sensing system with the biomimetic vesicles would provide a new pathway to explore 2D nanomaterials for developing a wide range of bioanalytical applications.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Biomimética , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Medições Luminescentes , Molibdênio
18.
Front Immunol ; 13: 1068449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713387

RESUMO

SARS-CoV-2 can cause lung diseases, such as pneumonia and acute respiratory distress syndrome, and multi-system dysfunction. Post-translational modifications (PTMs) related to SARS-CoV-2 are conservative and pathogenic, and the common PTMs are glycosylation, phosphorylation, and acylation. The glycosylation of SARS-CoV-2 mainly occurs on spike (S) protein, which mediates the entry of the virus into cells through interaction with angiotensin-converting enzyme 2. SARS-CoV-2 utilizes glycans to cover its epitopes and evade the immune response through glycosylation of S protein. Phosphorylation of SARS-CoV-2 nucleocapsid (N) protein improves its selective binding to viral RNA and promotes viral replication and transcription, thereby increasing the load of the virus in the host. Succinylated N and membrane(M) proteins of SARS-CoV-2 synergistically affect virus particle assembly. N protein regulates its affinity for other proteins and the viral genome through acetylation. The acetylated envelope (E) protein of SARS-CoV-2 interacts with bromodomain-containing protein 2/4 to influence the host immune response. Both palmitoylation and myristoylation sites on S protein can affect the virus infectivity. Papain-like protease is a domain of NSP3 that dysregulates host inflammation by deubiquitination and impinges host IFN-I antiviral immune responses by deISGylation. Ubiquitination of ORF7a inhibits host IFN-α signaling by blocking STAT2 phosphorylation. The methylation of N protein can inhibit the formation of host stress granules and promote the binding of N protein to viral RNA, thereby promoting the production of virus particles. NSP3 macrodomain can reverse the ADP-ribosylation of host proteins, and inhibit the cascade immune response with IFN as the core, thereby promoting the intracellular replication of SARS-CoV-2. On the whole, PTMs have fundamental roles in virus entry, replication, particle assembly, and host immune response. Mutations in various SARS-CoV-2 variants, which lead to changes in PTMs at corresponding sites, cause different biological effects. In this paper, we mainly reviewed the effects of PTMs on SARS-CoV-2 and host cells, whose application is to inform the strategies for inhibiting viral infection and facilitating antiviral treatment and vaccine development for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Processamento de Proteína Pós-Traducional , RNA Viral , Antivirais
19.
J Am Chem Soc ; 143(36): 14712-14725, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472346

RESUMO

Bridging polymer design with catalyst surface science is a promising direction for tuning and optimizing electrochemical reactors that could impact long-term goals in energy and sustainability. Particularly, the interaction between inorganic catalyst surfaces and organic-based ionomers provides an avenue to both steer reaction selectivity and promote activity. Here, we studied the role of imidazolium-based ionomers for electrocatalytic CO2 reduction to CO (CO2R) on Ag surfaces and found that they produce no effect on CO2R activity yet strongly promote the competing hydrogen evolution reaction (HER). By examining the dependence of HER and CO2R rates on concentrations of CO2 and HCO3-, we developed a kinetic model that attributes HER promotion to intrinsic promotion of HCO3- reduction by imidazolium ionomers. We also show that varying the ionomer structure by changing substituents on the imidazolium ring modulates the HER promotion. This ionomer-structure dependence was analyzed via Taft steric parameters and density functional theory calculations, which suggest that steric bulk from functionalities on the imidazolium ring reduces access of the ionomer to both HCO3- and the Ag surface, thus limiting the promotional effect. Our results help develop design rules for ionomer-catalyst interactions in CO2R and motivate further work into precisely uncovering the interplay between primary and secondary coordination in determining electrocatalytic behavior.

20.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804263

RESUMO

Interleukin (IL)-4 and IL-13 are known as pleiotropic Th2 cytokines with a wide range of biological properties and functions especially in immune responses. In addition, increasing activities have also been determined in oncogenesis and tumor progression of several malignancies. It is now generally accepted that IL-4 and IL-13 can exert effects on epithelial tumor cells through corresponding receptors. Type II IL-4 receptor (IL-4Rα/IL-13Rα1), predominantly expressed in non-hematopoietic cells, is identified to be the main target for both IL-4 and IL-13 in tumors. Moreover, IL-13 can also signal by binding to the IL-13Rα2 receptor. Structural similarity due to the use of the same receptor complex generated in response to IL-4/IL-13 results in overlapping but also distinct signaling pathways and functions. The aim of this review was to summarize knowledge about IL-4 and IL-13 and their receptors in pancreatic cancer in order understand the implication of IL-4 and IL-13 and their receptors for pancreatic tumorigenesis and progression and for developing possible new diagnostic and therapeutic targets.


Assuntos
Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/genética , Interleucina-13/genética , Interleucina-4/genética , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Humanos , Subunidade alfa de Receptor de Interleucina-4/genética , Neoplasias Pancreáticas/patologia , Receptores de Interleucina/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...