Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 2087-2093, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314714

RESUMO

The exceptional point (EP) is the critical phase transition point in parity-time (PT) symmetry systems, offering many unique physical phenomena, such as a chiral response. Achieving chiral EP in practical applications has been challenging due to the delicate balance required between gain and loss and complicated fabrication, limiting both working band and device miniaturization. Here, we proposed a nonlocal metasurface featuring orthogonal gold nanorods, where loss modulation is achieved through rod size and lattice pitch. By tuning the coupling strength, we experimentally observed the PT symmetry phase transition and chiral EP in the telecom-band. The experimental and simulated circular conversion dichroism at EP reach 0.79 and 0.99, respectively. We also demonstrated an abrupt phase flip of a specific component near EP theoretically. This work provides a feasible scheme for exploring EP in polarized space within the telecom-band, which may find applications in polarization control, wavelength division multiplexing, ultrasensitive sensing, imaging, etc.

2.
Opt Express ; 31(16): 26463-26473, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710507

RESUMO

The enhancement in responsivity of photodiodes (PDs) or avalanche photodiodes (APDs) with the traditional flip-chip bonding package usually comes at the expense of degradation in the optical-to-electrical (O-E) bandwidth due to the increase of parasitic capacitance. In this work, we demonstrate backside-illuminated In0.52Al0.48As based APDs with novel flip-chip bonding packaging designed to relax this fundamental trade-off. The inductance induced peak in the measured O-E frequency response of these well-designed and well-packaged APDs, which can be observed around its 3-dB bandwidth (∼30 GHz), effectively widens the bandwidth and becomes more pronounced when the active diameter of the APD is aggressively downscaled to as small as 3 µm. With a typical active window diameter of 14 µm, large enough for alignment tolerance and low optical coupling loss, the packaged APD exhibits a moderate damping O-E frequency response with a bandwidth (36 vs. 31 GHz) and responsivity (3.4 vs. 2.3 A/W) superior to those of top-illuminated reference sample under 0.9 Vbr operation, to attain a high millimeter wave output power (0 dBm at 40 GHz) and output current (12.5 mA at +8.8 dBm optical power). The excellent static and dynamic performance of this design open up new possibilities to further improve the sensitivity at the receiver-end of the next-generation of passive optical network (PON) and coherent communication systems.

3.
Opt Express ; 31(9): 14986-14996, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157350

RESUMO

Gain and loss balanced parity-time (PT) inversion symmetry has been achieved across multiple platforms including acoustics, electronics, and photonics. Tunable subwavelength asymmetric transmission based on PT symmetry breaking has attracted great interest. However, due to the diffraction limit, the geometric size of an optical PT symmetric system is much larger than the resonant wavelength, which limits the device miniaturization. Here, we theoretically studied a subwavelength optical PT symmetry breaking nanocircuit based on the similarity between a plasmonic system and an RLC circuit. Firstly, the asymmetric coupling of an input signal is observed by varying the coupling strength and gain-loss ratio between the nanocircuits. Furthermore, a subwavelength modulator is proposed by modulating the gain of the amplified nanocircuit. Notably, the modulation effect near the exceptional point is remarkable. Finally, we introduce a four-level atomic model modified by the Pauli exclusion principle to simulate the nonlinear dynamics of a PT symmetry broken laser. The asymmetric emission of a coherent laser is realized by full-wave simulation with a contrast of about 50. This subwavelength optical nanocircuit with broken PT symmetry is of great significance for realizing directional guided light, modulator and asymmetric-emission laser at subwavelength scales.

4.
Mol Nutr Food Res ; 67(12): e2200289, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906890

RESUMO

SCOPE: Prediabetes and diabetes are major public health problems worldwide without specific cure currently. Gut microbes have been recognized as one of the vital therapeutic targets for diabetes. The exploration that nobiletin (NOB) whether affects gut microbes provides a scientific basis for its application. METHODS AND RESULTS: A hyperglycemia animal model is established using high-fat-fed ApoE-/- mice. After 24 weeks of NOB intervention, the level of fasting blood glucose (FBG), glucose tolerance, insulin resistance, and glycosylated serum protein (GSP) are measured. Pancreas integrity is observed by hematoxylin-eosin (HE) staining and transmission electron microscopy. 16s RNA sequencing and untargeted metabolomics are to determine the changes of intestinal microbial composition and metabolic pathways. The levels of FBG and GSP in hyperglycemic mice are effectively reduced. The secretory function of pancreas is improved. Meanwhile, NOB treatment restored the gut microbial composition and affected metabolic function. Furthermore, NOB treatment regulates the metabolic disorder mainly through lipid metabolism, amino acid metabolism, and Secondary bile acid metabolism, etc. In addition, it is possibly existed mutual promotion between microbe and metabolites. CONCLUSION: NOB probably plays a vital role in the hypoglycemic effect and pancreatic islets protection by improving microbiota composition and gut metabolism.


Assuntos
Microbioma Gastrointestinal , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Camundongos Obesos , Dieta Hiperlipídica
5.
Opt Express ; 30(15): 26690-26700, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236856

RESUMO

In this work, a novel design for the electrodes in a near quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum near QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10° at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 32 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA.

6.
Sci Rep ; 12(1): 16541, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192421

RESUMO

We demonstrate a novel avalanche photodiode (APD) design which fundamentally relaxes the trade-off between responsivity and saturation-current performance at receiver end in coherent system. Our triple In0.52Al0.48As based multiplication (M-) layers with a stepped electric (E-) field inside has more pronounced avalanche process with significantly less effective critical-field than the dual M-layer. Reduced E-field in active M-layers ensures stronger E-field allocation to the thick absorption-layer with a smaller breakdown voltage (Vbr) resulting in less serious space-charge screening effect, less device heating at high output photocurrent. Compared to the dual M-layer reference sample, the demonstrated APD exhibits lower punch-through (- 9 vs. - 24 V)/breakdown voltages (- 43 vs. - 51 V), higher responsivity (19.6 vs. 13.5 A/W), higher maximum gain (230 vs. 130), and higher 1-dB saturation-current (> 5.6 vs. 2.5 mA) under 0.95 Vbr operation. Extremely high saturation-current (> 14.6 mA), high responsivity (7.3 A/W), and decent O-E bandwidth (1.4 GHz) can be simultaneously achieved using the demonstrated APD with a 200 µm active window diameter. In coherent FMCW LiDAR test bed, this novel APD exhibits a larger signal-to-noise ratio and high-quality 3-D images than the reference dual M-layer and high-performance commercial p-i-n PD modules, while requiring significantly less optical local-oscillator (LO) power (0.5 vs 4 mW).

7.
ACS Appl Mater Interfaces ; 14(33): 38216-38227, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35950777

RESUMO

Lignin, the most abundant aromatic polymer in nature, is one of the most promising renewable feedstocks for value-added polymer products. However, it is challenging to prepare high-performance and multifunctional polymer materials with renewable lignin because of its poor compatibility with the elastomer matrix. In fact, lignin often requires solvent fractionation, chemical modification, or prohibitively expensive additives. This work develops a cost-effective strategy to prepare ionomeric elastomer composites based on a commercial carboxyl elastomer and a high content of lignin without purification or chemical modification. The compatibility between the elastomer and lignin is improved by the incorporation of zinc oxide which creates metal-ligand coordination at the interfaces between the carboxyl groups of the elastomer and the oxygen-bearing groups of the lignin. This results in fine dispersion of the lignin in the elastomer matrix, even when its content reaches 50 wt %. The lignin/elastomer composites show excellent mechanical properties, which are attributed to the reinforcing effect of the lignin domains and the presence of abundant sacrificial coordination bonds. Moreover, ionic bonds and ionic aggregates created by the neutralization of the zinc ions with the carboxyl groups of the elastomer behave as physical crosslinks which endow the composites with excellent recyclability; namely, their mechanical properties are retained or even improved after multiple reprocessing cycles. They also show good self-repairability and shape memory. Hence, this work may open up new avenues to utilize lignin as a renewable alternative to petroleum derivatives for designing and fabricating high-performance and multifunctional elastomer materials.

8.
Opt Lett ; 47(15): 3676-3679, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913287

RESUMO

Integrated photonics provides a path for miniaturization of an optical system to a compact chip scale and offers reconfigurability by the integration of active components. Here we report a chip-scale reconfigurable scan lens based on an optical phased array, consisting of 30 actively controlled elements on the InP integrated photonic platform. By configuring the phase shifters, we show scanning of a nearly diffraction-limited focused spot with a full width at half maximum spot size down to 2.7 µm at the wavelength of 1550 nm. We demonstrate the key functions needed for a laser-scanning microscope, including light focusing, collection, and steering. We also perform confocal measurements to detect reflection at selective depths.

9.
Opt Lett ; 46(18): 4522-4525, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525037

RESUMO

Plasmonic nanostructures provide a new way to improve nonlinear optical effects. As a mode of surface plasmons (SP), localized SPs can highly localize and enhance electromagnetic fields within a subwavelength volume. In this work, we developed a one-dimensional V-groove Ag nanograting. Through simulation, we realized triple-resonance enhanced four-wave mixing (FWM), in which both the excitation and signal waves are in resonance with LSPRs modified by propagating SPs, and can perfectly overlap with each other in each single nanogroove. Compared with that from a flat Ag plate, the FWM enhancement factor can be over six orders of magnitude. Next, we filled the Ag V-groove with nonlinear polymer 2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene and further improved the enhancement factor to eight orders of magnitude, together with a conversion efficiency of 1.02×10-2. Finally, by changing the water filling ratio, the FWM signal is tuned over 180 nm, while keeping the enhancement factor over seven orders of magnitude.

10.
Nano Lett ; 21(6): 2596-2602, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689382

RESUMO

Non-Hermitian photonic systems with gains and/or losses have recently emerged as a powerful approach for topology-protected optical transport and novel device applications. To date, most of these systems employ coupled optical systems of diffraction-limited dielectric waveguides or microcavities, which exchange energy spatially or temporally. Here, we introduce a diffraction-unlimited approach using a plasmon-exciton coupling (polariton) system with tunable plasmonic resonance (energy and line width) and coupling strength. By designing a chirped silver nanogroove cavity array and coupling a single tungsten disulfide monolayer with a large contrast in resonance line width, we show the tuning capability through energy level anticrossing and plasmon-exciton hybridization (line width crossover), as well as spontaneous symmetry breaking across the exceptional point at zero detuning. This two-dimensional hybrid material system can be applied as a scalable and integratable platform for non-Hermitian photonics, featuring seamless integration of two-dimensional materials, broadband tuning, and operation at room temperature.

11.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419168

RESUMO

This study aimed to modify an electrospun regenerated cellulose (RC) nanofiber membrane by surface grafting 2-(dimethylamino) ethyl methacrylate (DMAEMA) as a monomer via atom transfer radical polymerization (ATRP), as well as investigate the effects of ATRP conditions (i.e., initiation and polymerization) on enzyme immobilization. Various characterizations including XPS, FTIR spectra, and SEM images of nanofiber membranes before and after monomer grafting verified that poly (DMAEMA) chains/brushes were successfully grafted onto the RC nanofiber membrane. The effect of different ATRP conditions on laccase immobilization was investigated, and the results indicated that the optimal initiation and monomer grafting times were 1 and 2 h, respectively. The highest immobilization amount was obtained from the RC-Br-1h-poly (DMAEMA)-2h membrane (95.04 ± 4.35 mg), which increased by approximately 3.3 times compared to the initial RC membrane (28.57 ± 3.95 mg). All the results suggested that the optimization of initiation and polymerization conditions is a key factor that affects the enzyme immobilization amount, and the surface modification of the RC membrane by ATRP is a promising approach to develop an advanced enzyme carrier with a high enzyme loading capacity.

12.
Nano Lett ; 21(1): 605-611, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350840

RESUMO

We present a strong coupling system realized by coupling the localized surface plasmon mode in individual silver nanogrooves and propagating surface plasmon modes launched by periodic nanogroove arrays with varied periodicities on a continuous silver medium. When the propagating modes are in resonance with the localized mode, we observe a √N scaling of Rabi splitting energy, where N is the number of propagating modes coupled to the localized mode. Here, we confirm a giant Rabi splitting on the order of 450-660 meV (N = 2) in the visible spectral range, and the corresponding coupling strength is 160-235 meV. In some of the strong coupling cases studied by us, the coupling strength is about 10% of the mode energy, reaching the ultrastrong coupling regime.

13.
Opt Lett ; 45(17): 4839-4842, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870871

RESUMO

In this work, we demonstrate a novel high-power vertical-cavity surface-emitting laser (VCSEL) array with highly single-mode (SM) and single-polarized output performance without significantly increasing the intra-cavity loss and threshold current (Ith). By combining a low-loss zinc-diffusion aperture with an electroplated copper substrate, we can obtain a highly SM output (side mode suppression ratio >50dB) with a very narrow divergence angle (1/e2:∼10∘) under high output power (3.1 W; 1% duty cycle) and sustain a single polarization state, with a polarization suppression ratio of around 9 dB, under the full range of bias currents. Compared to the reference device without the copper substrate, the demonstrated array can not only switch the output optical spectra from quasi-SM to highly SM but also maintain a close threshold current value (Ith: 0.8 versus 0.7 mA per unit device) and slope efficiency. The enhancement in fundamental mode selectivity of our VCSEL structure can be attributed to the single-polarized lasing mode induced by tensile strain, which is caused by the electroplated copper substrate, as verified by the double-crystal x-ray measurement results.

14.
Anal Sci ; 36(8): 953-957, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037348

RESUMO

Nanochannel plastic membranes are excellent materials for electroosmotic pump (EOP) elements owing to their surface charge properties, flexibility and cost-effectiveness. However, the surface charge properties of plastics are inferior to those of silicate-based materials. This paper reports a performance-enhanced EOP equipped with a glassified track-etch polycarbonate membrane (PC), which has a nanochannel surface covered by allylhydridopolycarbosilane (AHPCS). The effects of applied voltage, pH and membrane pore size on the electroosmotic flow velocity, along with a comparative study of the EOP with coated and pure membranes were investigated. It was found that when low DC voltage (10 - 40 V) was applied to both ends of the pump, the magnitude of the electroosmotic flow was linearly proportional to the voltage when the pore size of the membrane was less than 600 nm. A higher flow rate was obtained with larger pore size membranes. Compared with the uncoated film, the coated one showed faster electroosmosis velocity, with higher stability under the same conditions. For pH 10.0 buffer solution, a flow rate of 89.13 µL/min was obtained in the modified membrane-based EOP with excellent repeatability and durability, while the flow rate was only 37.89 µL/min in the bare PC membrane under 20 V. In order to demonstrate the performance of the developed EOP, the EOP was used for microcomplexometric titration to determine actual tap water hardness. The measured results were highly consistent with the results of a conventional complexometric titration methed. The EOP with an AHPCS-coated plastic membrane expanded the application range to harsh condition solutions, such as high-concentration acids or bases.

15.
Opt Express ; 27(11): 15495-15504, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163745

RESUMO

We demonstrate a top-illuminated high-speed uni-traveling carrier photodiode (UTC-PD) with a novel design in the p-type absorber, which can effectively shorten the photon absorption depth at telecommunication wavelengths (1.31~1.55 µm) and further enhance the bandwidth-efficiency product of UTC-PD. In our proposed new UTC-PD structure, the p-type In0.53Ga0.47As absorption layer is replaced by the type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber. Due to the narrowing of the bandgap and enhancement of the photo-absorption process at the type-II interface between the GaAs0.5Sb0.5 and In0.53Ga0.47As layers, our device shows an over 16.7% improvement in the responsivity compared with that of UTC-PD with the same thickness of pure In0.53Ga0.47As absorber (0.7 µm) and a zero optical coupling loss. Our demonstrated device with a simple top-illuminated structure offers a large active mesa (25 µm), a wide optical-to-electrical (O-E) bandwidth (33 GHz), a high responsivity (0.7 A/W), and a high saturation current (>5 mA) under 1.31 µm optical wavelength. These promising results suggest that our proposed PD structure can fundamentally overcome the trade-off among bandwidth, efficiency, and device active diameter of high-speed PDs.

16.
Opt Express ; 27(5): 7627-7628, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876324

RESUMO

Photonic technologies that support the low cost manufacturing needed for automotive sensors have experienced explosive developments in recent years. To date most commercially available lidar system have been direct detection time-of-flight (ToF) sensors operating at 905 nm using mechanical mirrors for beam steering. However, these sensors suffer from important drawbacks. One issue is eye-safety, which limits maximum laser powers and hence operating range. Direct detection systems must also content with potential interference issues when lots of cars operate lidar systems simultaneously. In addition, mechanical scanners are frequently bulky and may be difficult to integrate within the form factors allowed by modern vehicles.

18.
Org Lett ; 20(22): 6984-6989, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30398887

RESUMO

A visible-light-mediated radical tandem cyclization of ortho-isocyano-α-bromo cinnamates to 2-substituted indole-3-glyoxylates is achieved by formation of both C-C/C-S and C-O bonds. The reaction proceeds through a hitherto unprecedented bromine- or methoxy-group-promoted umpolung back electron transfer from an α-carbonyl radical to the photocatalyst. This method allows preparation of diverse 2-arylated or 2-thioarylated indole-3-glyoxylates. The glyoxylate group installed in the products can be utilized for several biologically relevant manipulations.

19.
ACS Appl Mater Interfaces ; 10(37): 30919-30924, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30160097

RESUMO

Raising the light absorption of the photoactive layer in polymer solar cells (PSCs) without increasing the layer thickness is desirable but challenging because of the low carrier mobility of organic materials. Herein, we used the coupled localized surface plasmon resonance of heterostructured Au-Cu2- xS nanocrystals (NCs) to improve the light-trapping capability of the photoactive layer of PSCs. Broadband light absorption and a considerable improvement of the power conversion efficiency were obtained when the photoactive layer was doped with a tiny amount of NCs. This can be explicated by the enhanced near-field intensity and broadband scattering properties of added NCs.

20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 39(5): 629-636, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29125104

RESUMO

Objective To investigate the polymorphisms of 23 Y-STR loci in a Han population in Jiangsu province. Methods Blood samples were collected from 4821 unrelated healthy Han males in Jiangsu province. DNA templates were amplified by PowerPlex Y23 kit,and the amplification products were detected by 3500xL genetic analyzer. Then,we calculated the allele frequencies and gene diversities respectively,as well as the haplotype frequencies and haplotype diversities. Results The gene diversity of these 23 Y-STR loci ranged 0.4099-0.9696. A total of 4781 haplotypes were detected,of which 4743 were found once. The haplotype diversity was 0.99999812. Conclusion The 23 Y-STR loci used in this study are highly polymorphic in Han individuals in Jiangsu province and therefore suitable for population genetic study and forensic individual identification.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Genética Populacional , Polimorfismo Genético , China , Frequência do Gene , Haplótipos , Humanos , Masculino , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...