Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134280, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636233

RESUMO

Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.


Assuntos
Compostagem , Fezes , Frutas , Muco , Oligoquetos , Verduras , Animais , Fezes/microbiologia , Enterobacteriaceae , Microbiologia do Solo
2.
Nature ; 622(7984): 754-760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730999

RESUMO

Single-atom catalysts (SACs) have well-defined active sites, making them of potential interest for organic synthesis1-4. However, the architecture of these mononuclear metal species stabilized on solid supports may not be optimal for catalysing complex molecular transformations owing to restricted spatial environment and electronic quantum states5,6. Here we report a class of heterogeneous geminal-atom catalysts (GACs), which pair single-atom sites in specific coordination and spatial proximity. Regularly separated nitrogen anchoring groups with delocalized π-bonding nature in a polymeric carbon nitride (PCN) host7 permit the coordination of Cu geminal sites with a ground-state separation of about 4 Å at high metal density8. The adaptable coordination of individual Cu sites in GACs enables a cooperative bridge-coupling pathway through dynamic Cu-Cu bonding for diverse C-X (X = C, N, O, S) cross-couplings with a low activation barrier. In situ characterization and quantum-theoretical studies show that such a dynamic process for cross-coupling is triggered by the adsorption of two different reactants at geminal metal sites, rendering homo-coupling unfeasible. These intrinsic advantages of GACs enable the assembly of heterocycles with several coordination sites, sterically congested scaffolds and pharmaceuticals with highly specific and stable activity. Scale-up experiments and translation to continuous flow suggest broad applicability for the manufacturing of fine chemicals.

3.
Nat Nanotechnol ; 18(7): 763-771, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231143

RESUMO

Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M1) in a MoS2 host. Among all the M1/MoS2 species, Ni1/MoS2 adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni1 sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O2. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni1/MoS2, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni1/MoS2 is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(p)-Ni(d) hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.

4.
RSC Adv ; 12(42): 27170-27178, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276019

RESUMO

Great advances have been made in the development of carbon dot (CD)-based fluorescent materials for the detection of hypochlorite in the past few years. However, developing new CDs with high quantum yield (QY) for the rapid detection of hypochlorite and gaining a deeper insight into the detection mechanism still need to be further investigated. Herein, N-doped carbon dots (NCDs) with high QYs, which can reach as high as 67%, were efficiently prepared employing citric acid and o-phenylenediamine as raw materials. Significantly, the NCDs could act as fluorescent probes for the rapid detection of hypochlorite and the limit of detection is calculated to be as low as 12.6 nM on the basis of fluorescent "on-off" effects upon the addition of hypochlorite. Furthermore, UV-vis absorption spectra, Density Functional Theory (DFT) calculations and kinetic analysis of fluorescence (FL) decay were used to investigate the detection mechanism. The results indicate that the electron transfer (ET) process from NCDs to imine-functionalized NCDs (imine-NCDs) and the higher energy gap of imine-NCDs will facilitate the excited-energy of NCDs to be dissipated in the form of a non-radiative decay procedure, resulting in a static quenching mechanism. Therefore, these observations are useful in deepening the understanding of the hypochlorite induced FL quenching mechanism and thereby developing oxidative stress-related detection materials.

5.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744999

RESUMO

In this study, we demonstrate the structural evolution of a two-dimensional (2D) supramolecular assembly system, which is steered by the thermally activated deprotonation of the primary organic building blocks on a Ag(111) surface. Scanning tunneling microscopy revealed that a variety of structures, featuring distinct structural, chiral, and intermolecular bonding characters, emerged with the gradual thermal treatments. According to our structural analysis, in combination with density function theory calculations, the structural evolution can be attributed to the successive deprotonation of the organic building blocks due to the inductive effect. Our finding offers a facile strategy towards controlling the supramolecular assembly pathways and provides a comprehensive understanding of the 2D crystal engineering on surfaces.

6.
Angew Chem Int Ed Engl ; 60(25): 13896-13899, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33851507

RESUMO

We have achieved an on-surface synthesis of giant conjugated macrocycles having a diameter of ≈7 nm and consisting of up to 30 subunits. The synthesis started with a debrominative coupling of the molecular precursors on a hot Ag(111) surface, leading to the formation of arched oligomeric chains and macrocycles. These products were revealed by scanning tunneling microscopy in combination with density functional theory to be covalent oligomers. These intermediates also display C-Ag organometallic bonds between parallel molecular subunits due to site-selective debromination and the asymmetric molecular conformation. Subsequent cyclodehydrogenation at higher temperatures steered the final conjugation of the macrocycles. Our findings provide a novel design strategy toward π-conjugated macrocycles and open up new opportunities for the precise synthesis of organic nanostructures.

7.
Carbohydr Res ; 340(8): 1453-9, 2005 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-15882851

RESUMO

Chlorogenin 3-O-beta-chacotrioside (1) and its 6alpha-O-acyl derivatives (2-6) were concisely synthesized. Introduction of a hydroxyl or acyloxy group onto the C-6 of the steroidal aglycone of dioscin decreased significantly the cytotoxicity of the parent saponin (dioscin).


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Saponinas/síntese química , Saponinas/farmacologia , Antineoplásicos/química , Células HeLa , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Estrutura Molecular , Saponinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...