Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801804

RESUMO

Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.


Assuntos
Microcistinas , Microcystis , Tensoativos , Microcistinas/química , Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Tensoativos/química , Tensoativos/farmacologia , Octoxinol/química , Octoxinol/farmacologia , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacologia
2.
Sci Total Environ ; 913: 169786, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181954

RESUMO

Calcium ions (Ca2+) and magnesium ions (Mg2+) are pivotal in the community composition and stability of harmful cyanobacteria, yet the physiological and molecular responses remains poorly understood. This study aims to explore these responses in the high microcystin producer Microcystis aeruginosa (M. aeruginosa). Results indicate that the growth of M. aeruginosa is inhibited by Ca2+/Mg2+ exposure (0.5-10 mM), while Fv/Fm photosynthetic parameters and extracellular microcystin-leucine-arginine (MC-LR) concentrations increase. Additionally, MC-LR release is significantly elevated under exposure to Ca2+/Mg2+, posing potential aquatic environmental risks. Transcriptomic analysis reveals downregulation of genes related to cell architecture, membrane transport, and metabolism, while the genes linked to photosynthesis electron transmission and heavy metal-responsive transcriptional regulators are upregulated to adapt to environmental changes. Further analysis reveals that Ca2+ and Mg2+ primarily impact sulfur metabolism and transport of amino acids and mineral within cells. These findings provide insights into M. aeruginosa cells responses to Ca2+ and Mg2+ exposure.


Assuntos
Microcystis , Microcystis/fisiologia , Cálcio/metabolismo , Magnésio , Microcistinas/metabolismo , Perfilação da Expressão Gênica , Íons/metabolismo
3.
Bull Environ Contam Toxicol ; 110(2): 43, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652010

RESUMO

The continuous discharge of antibiotics into the environment poses a serious threat to the ecological environment and human health. In this study, photocatalysis and microalgae were combined to study the removal of tetracycline hydrochloride (TCH) and its photodegradation intermediates in water. The results showed that after photocatalytic treatment, the removal rate of TCH reached 80%, but the mineralization rate was only 17.7%. While Chlorella sp. alone had poor tolerance to high concentrations of TCH, the combined treatment of photocatalysis and microalgae completely removed TCH and increased the mineralization efficiency to 35.0%. Increased cell density was observed, indicating that TCH and the intermediates produced in the photocatalysis process could be utilized by algae for growth. Meanwhile, TCH degradation pathways were proposed based on Liquid Chromatograph Mass Spectrometer analysis, and the toxicity of intermediates detected was predicted using ECOSAR software, which showed that the type and quantity of highly toxic intermediates decreased significantly after subsequent algal treatment. The results demonstrate that photocatalysis and microalgae combined treatment is an efficient and eco-friendly method for the removal of antibiotics in water.


Assuntos
Chlorella , Microalgas , Humanos , Tetraciclina/toxicidade , Tetraciclina/metabolismo , Microalgas/metabolismo , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Água
4.
Environ Sci Pollut Res Int ; 29(55): 83211-83219, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35763143

RESUMO

The protective mechanism of extracellular polymeric substance (EPS) secreted by a harmful cyanobacteria against tannins allelochemicals was explored in this study. The binding properties of soluble EPS (SEPS) and bound EPS (BEPS) of Microcystis aeruginosa to tannic acid (TA) were investigated via fluorescence spectroscopy. The results suggested that TA interacted with the proteins in SEPS and BEPS mainly with binding constants of 5.26 and 7.93 L/mol, respectively; TA interacted with the humic acids in SEPS and BEPS mainly with binding constants of 5.12 and 5.24 L/mol, respectively. Thermodynamic experiments confirmed that the binding was mainly controlled by the hydrophobic force. Combined with Fourier transform infrared spectroscopy, it was found that the amine, carbonyl, carboxyl, and hydroxyl groups in EPS were the main functional groups contributing to the interaction of TA with EPS. The existence of EPS reduced the toxicity of TA to algal cells, with the 96 h inhibition rate of 40 mg L-1 TA on algal cells decreasing by 48.95%. The results of this study may improve our understanding of the protective mechanism of cyanobacteria against tannins allelochemicals.


Assuntos
Cianobactérias , Microcystis , Microcystis/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Taninos , Feromônios/farmacologia , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA