Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Int J Biol Macromol ; 270(Pt 1): 132242, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729487

RESUMO

Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.

2.
Sci Bull (Beijing) ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38641514

RESUMO

Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian topologies that thrive on involving multiple gaps were studied, unveiling a new horizon in topological physics beyond the conventional paradigm. Here, we report on the first experimental realization of a topological Euler insulator phase with unique meronic characterization in an acoustic metamaterial. We demonstrate that this topological phase has several nontrivial features: First, the system cannot be described by conventional topological band theory, but has a nontrivial Euler class that captures the unconventional geometry of the Bloch bands in the Brillouin zone. Second, we uncover in theory and probe in experiments a meronic configuration of the bulk Bloch states for the first time. Third, using a detailed symmetry analysis, we show that the topological Euler insulator evolves from a non-Abelian topological semimetal phase via. the annihilation of Dirac points in pairs in one of the band gaps. With these nontrivial properties, we establish concretely an unconventional bulk-edge correspondence which is confirmed by directly measuring the edge states via. pump-probe techniques. Our work thus unveils a nontrivial topological Euler insulator phase with a unique meronic pattern and paves the way as a platform for non-Abelian topological phenomena.

3.
Brain Res ; 1837: 148855, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471644

RESUMO

Subarachnoid hemorrhage (SAH) is characterized by the extravasation of blood into the subarachnoid space, in which erythrocyte lysis is the primary contributor to cell death and brain injuries. New evidence has indicated that meningeal lymphatic vessels (mLVs) are essential in guiding fluid and macromolecular waste from cerebrospinal fluid (CSF) into deep cervical lymph nodes (dCLNs). However, the role of mLVs in clearing erythrocytes after SAH has not been completely elucidated. Hence, we conducted a cross-species study. Autologous blood was injected into the subarachnoid space of rabbits and rats to induce SAH. Erythrocytes in the CSF were measured with/without deep cervical lymph vessels (dCLVs) ligation. Additionally, prior to inducing SAH, we administered rats with vascular endothelial growth factor C (VEGF-C), which is essential for meningeal lymphangiogenesis and maintaining integrity and survival of lymphatic vessels. The results showed that the blood clearance rate was significantly lower after dCLVs ligation in both the rat and rabbit models. DCLVs ligation aggravated neuroinflammation, neuronal damage, brain edema, and behavioral impairment after SAH. Conversely, the treatment of VEGF-C enhanced meningeal lymphatic drainage of erythrocytes and improved outcomes in SAH. In summary, our research highlights the indispensable role of the meningeal lymphatic pathway in the clearance of blood and mediating consequences after SAH.

5.
Nanoscale ; 16(12): 6296-6308, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38463012

RESUMO

Natural gas hydrates (NGHs) hold immense potential as a future energy resource and for sustainable applications such as gas capture and storage. Due to the challenging formation conditions, however, their mechanical properties remain poorly understood. Herein, the mechanical characteristics of tetrahydrofuran (THF) hydrates, a proxy for methane hydrates, were investigated at different ice contents, strain rates, and temperatures using uniaxial compressive experiments. The results unveil a distinct behavior in the peak strength of THF hydrates with a varying ice content, strain rate and temperature, exhibiting an increase as the strain rate and temperature decrease, in contrast to the peak strength-strain rate relationship observed in polycrystalline ice. Based on the experimental data, four machine learning (ML) models including extreme gradient boosting (XGboost), multilayer perceptron (MLP), gradient boosting decision tree (GBDT) and decision tree (DT) were developed to predict the peak strength. The XGboost model demonstrates superior predictive performance, emphasizing the significant influence of ice content and temperature on the peak strength of hydrates. Furthermore, molecular dynamics (MD) simulations were employed to gain insights into the dissociation and formation processes of clathrate cages, as well as phase transitions and amorphization occurring at grain boundaries (GBs) involving diverse unconventional clathrate cages, including 51265, 4151062, 4151064, 425861 and 425862, with 425861 and 425862 cages being predominant. This study enhances our understanding of the mechanical properties and deformation mechanisms of hydrates and provides a ML-based predictive framework for estimating the compressive strength of hydrates under diverse coupling conditions. The findings have significant implications for stability assessments of NGHs and the exploitation of NGH resources.

6.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Bull (Beijing) ; 69(7): 893-900, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341349

RESUMO

Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold classification of topological phases with particle-hole symmetry. In two dimensions, TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles. Furthermore, a piercing of π-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation. Such two-dimensional (2D) TDPs have been a focus in the research frontier, but their experimental realizations are still under debate. Here, with a novel design scheme, we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies. The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings: A technique that could unlock the realization of all topological classes with passive metamaterials. In our experiments, we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like time-reversal symmetry built in the system. We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport, thus revealing the unprecedented D and DIII class topologies with direct evidence. Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics, materials science, and phononic information processing.

8.
Food Chem X ; 21: 101184, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38357369

RESUMO

Dextrans (DXs) are a group of natural polysaccharides with different branching patterns. Previous studies examining the effects of DXs on plant protein gels have only focused on α-(1 â†’ 3)-branched DXs. Here, we compared the effects of α-(1 â†’ 3)-branched DX L12 with those of two α-(1 â†’ 2)-branched DXs on the properties of glucono-δ-lactone-induced faba bean protein isolate (FPI) gels. DX L12 showed stronger effects in decreasing gel hardness and enhancing gel viscoelasticity than the other two DXs. Moreover, DX L12 decreased the water-holding capacity of FPI gels, whereas the other DXs enhanced it. Microstructural analysis revealed that DX addition promoted phase separation during gel formation. However, FPI/L12 gels exhibited greater phase separation than the other two gels and contained larger void spaces. These differences could be attributed to the varying water adsorption and self-association properties of the DXs. These findings could guide the application of DX in the tailored preparation of plant protein gels.

9.
Res Social Adm Pharm ; 20(6): 65-71, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423928

RESUMO

BACKGROUND: During the ongoing global pandemic of COVID-19, the association between hyperglycemia and COVID-19 infection has emerged as a notable concern. Therefore, finding effective methods to manage hyperglycemia in patients with COVID-19 is crucial. OBJECTIVE: To introduce the clinical pharmacists participating in multidisciplinary collaborative whole hospital blood glucose management mode, and to explore its effect on blood glucose control in patients with coronavirus disease 2019 infection and complicated with hyperglycemia. METHODS: Patients with COVID-19 treated at Nanjing Drum Tower Hospital from December 2022 to January 2023 were assigned to routine diagnosis and treatment group and whole hospital blood glucose management group according to the blood glucose management plan received by patients. The groups were compared in regards to their adherence to management advice, blood glucose levels, fluctuation, inflammation-related indicators, medical service-related indicators, and incidence of hypoglycemia and adverse events. RESULTS: After 5 days of glucose management, both groups showed a decrease in fasting and postprandial blood glucose. Postprandial blood glucose in the whole hospital glucose management group was significantly lower than the routine group (P < 0.05). The whole hospital glucose management group showed a significant increase in compliance rate, improved inflammation-related indicators, and higher detection rates for hemoglobin and islet function (P < 0.05). Implementation rates for medical orders and treatment plans were also higher in the whole hospital group (P < 0.05). There was no significant difference in incidence of adverse events. CONCLUSIONS: Multidisciplinary blood glucose management is highly recommended for patients with COVID-19 who have hyperglycemia due to its effectiveness, standardization, safety, and improvement of inflammation indicators.


Assuntos
Glicemia , COVID-19 , Hiperglicemia , Farmacêuticos , Papel Profissional , Humanos , COVID-19/complicações , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Farmacêuticos/organização & administração , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Serviço de Farmácia Hospitalar/organização & administração , Equipe de Assistência ao Paciente/organização & administração , Controle Glicêmico , Hipoglicemia , Adulto
10.
Fish Shellfish Immunol ; 145: 109300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104701

RESUMO

The leucine-rich repeat (LRR) domain is a crucial structure in a variety of immune related proteins and displays multiple immune functions. In this study, the open reading frame (ORF) of an LRR-only protein was cloned from the Chinese mitten crab, Eriocheir sinensis (EsLRRop1). The protein sequence of EsLRRop1 contained seven LRR motifs, three LRR-TYP motifs and an LRRCT motif. Tissue distribution exhibited that EsLRRop1 mainly expressed in nervous tissues including thoracic ganglion, eyestalk and brain while showed relatively lower transcriptional level in hemocyte. Based on the above expression characteristics, the responses of EsLRRop1 to the challenge of Vibrio parahaemolyticus and Staphylococcus aureus were tested. The result showed that the transcript of EsLRRop1 in thoracic ganglion and eyestalk up-regulated after being challenged with S. aureus, while it decreased post injection with V. parahaemolyticus. The transcript of EsLRRop1 in hemocytes up-regulated sharply at 3 h and decreased at 12 h and 24 h after being challenged with V. parahaemolyticus, while it decreased at 12 h and 24 h post injection with S. aureus. The recombinant protein of EsLRRop1 (His-EsLRRop1) displayed binding activities to V. alginolyticus, V. harveyi, V. parahaemolyticus, S. aureus, Corynebacterium glutamicum and Micrococcus lysodeikticus as well as lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, the His-EsLRRop1 exhibited inhibitory activity against V. parahaemolyticus and V. harveyi with minimum inhibitory concentration (MIC) of 3.57-7.14 µM and 7.14-14.28 µM, respectively. These results provide theoretical basis for the application of EsLRRop1 in inhibiting bacteria in aquaculture practice.


Assuntos
Braquiúros , Staphylococcus aureus , Animais , Leucina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Repetições Ricas em Leucina , Clonagem Molecular , Sequência de Aminoácidos , Braquiúros/metabolismo , Filogenia , Hemócitos , Proteínas de Artrópodes/genética , Imunidade Inata
11.
Gels ; 9(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131958

RESUMO

The properties of faba bean (Vicia faba L.) protein isolate (FPI) gels depend on their starting protein material and can be modulated by the addition of polysaccharides. In order to investigate the interplay between these two factors, commercial FPI (FPI1) and FPI prepared in-house (FPI2) were used to fabricate glucono-delta-lactone-induced gels, with or without dextran (DX) addition. FPI1 exhibited lower solubility in water and a larger mean particle size, likely because it experienced extensive degradation due to the intense conditions involved in its preparation. The FPI1 gel showed a similar water-holding capacity as the FPI2 gel; however, its hardness was lower and viscoelasticity was higher. After DX addition, the hardness of both FPI gels decreased, while their water-holding capacity increased. Interestingly, DX addition decreased the viscoelasticity of the FPI1 gel but enhanced the viscoelasticity of the FPI2 gel. The microstructural analysis demonstrated that the density of the aggregation network decreased in the FPI1 gel after DX addition but increased in the FPI2 gel. This was consistent with the changes observed in the dominant protein interaction forces in these gels after DX addition. Overall, these findings have the potential to guide ingredient selection for the tailored preparation of FPI gels.

12.
J Oral Microbiol ; 15(1): 2264619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808891

RESUMO

Acute pancreatitis (AP) is a common abdomen clinical emergency. Most APs have mild clinical symptoms and a good prognosis. However, about 20% of patients develop severe acute pancreatitis (SAP), increasing morbidity and mortality. The microbiome's impact on AP pathophysiology has received increasing attention. Hence, to explore changes in oral microbial composition in acute pancreatitis, we collected clinical information and oral saliva samples from 136 adult participants: 47 healthy controls, 43 acute mild AP (MAP), 29 moderate AP (MSAP), and 17 severe AP (SAP). Using 16S rRNA gene sequencing, 663,175 high-quality sequences were identified. The relative abundance and diversity of oral microorganisms in AP patients increased, with decreased beneficial bacteria such as Streptococcus, Neisseria, and Gemella, and increased Prevotella, Veillonella, Granulicatella, Actinomyces, and Peptostreptococcus in the AP group. Further changes in microbial composition occurred with increasing disease severity, including a decreased abundance of beneficial bacteria such as Neisseria, Haemophilus, and Gemella in MSAP and SAP compared to MAP. Moreover, the Lefse analysis showed that Prevotella, Peptostreptococcus, Actinomyces, and Porphyromonas were better microbial markers for AP. Therefore, oral microbiome changes could distinguish AP from healthy individuals and serve as an early novel predictor of disease severity in AP patients.

13.
J Phys Condens Matter ; 36(1)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37714183

RESUMO

Understanding the mechanical properties of CO2hydrate is crucial for its diverse sustainable applications such as CO2geostorage and natural gas hydrate mining. In this work, classic molecular dynamics (MD) simulations are employed to explore the mechanical characteristics of CO2hydrate with varying occupancy rates and occupancy distributions of guest molecules. It is revealed that the mechanical properties, including maximum stress, critical strain, and Young's modulus, are not only affected by the cage occupancy rate in both large 51262and small 512cages, but also by the distribution of guest molecules within the cages. Specifically, the presence of vacancies in the 51262large cages significantly impacts the overall mechanical stability compared to 512small cages. Furthermore, four distinct machine learning (ML) models trained using MD results are developed to predict the mechanical properties of CO2hydrate with different cage occupancy rates and cage occupancy distributions. Through analyzing ML results, as-developed ML models highlight the importance of the distribution of guest molecules within the cages, as crucial contributor to the overall mechanical stability of CO2hydrate. This study contributes new knowledge to the field by providing insights into the mechanical properties of CO2hydrates and their dependence on cage occupancy rates and cage occupancy distributions. The findings have implications for the sustainable applications of CO2hydrate, and as-developed ML models offer a practical framework for predicting the mechanical properties of CO2hydrate in different scenarios.

14.
Phys Chem Chem Phys ; 25(37): 25368-25376, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37705382

RESUMO

The thermal transport properties of five-fold twinned (5FT) germanium-silicon (Ge-Si) heteronanowires (h-NWs) with varying cross-sectional areas, germanium (Ge) domain ratios and heterostructural patterns are investigated using homogeneous nonequilibrium molecular dynamics (HNEMD) simulations. The results demonstrate a distinctive behavior in the thermal conductivity (κ) of 5FT-NWs, characterized by a "flipped" trend at a critical cross-sectional area. This behavior is attributed to the hydrodynamic phonon flow, arising from the normal three-phonon scattering process in the low-frequency region. In addition, the composition ratio of 5FT-NWs has a significant impact on reducing the κ of 5FT-NWs and suppressing the hydrodynamic effect. Intriguingly, as the homogeneous element domains are separated, stronger phonon hydrodynamic flows are observed in comparison to the adjacent homogeneous element domains. By analyzing various phonon properties, including phonon dispersion, three-phonon scattering rate, and phonon mean free path, critical insights into the origin of the differential κ in different 5FT-NW structures are provided. The findings deepen the understanding of the thermal transport properties of nanomaterials and hold implications for the design and development of nanoelectronics and thermoelectric devices.

16.
PLoS One ; 18(8): e0290853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647311

RESUMO

Microbes are an important part of the vineyard ecosystem, which significantly influence the quality of grapes. Previously, we identified a bud mutant variety (named 'Fengzao') from 'Kyoho' grapes. The variation of microbial communities in grape and its bud mutant variety has not been studied yet. So, in this study, with the samples of both 'Fengzao' and 'Kyoho', we conducted high-throughput microbiome sequencing and investigated their microbial communities in different tissues. Obvious differences were observed in the microbial communities between 'Fengzao' and 'Kyoho'. The fruit and the stem are the tissues with relatively higher abundance of microbes, while the leaves contained less microbes. The fruit and the stem of 'Kyoho' and the stem of 'Fengzao' had relatively higher species diversity based on the alpha diversity analysis. Proteobacteria, Enterobacteriaceae and Rhodobacteraceae had significantly high abundance in 'Fengzao'. Firmicutes and Pseudomonas were highly abundant in the stems of 'Kyoho', and family of Spirochaetaceae, Anaplasmataceae, Chlorobiaceae, and Sphingomonadaceae, and genera of Spirochaeta, Sphingomonas, Chlorobaculum and Wolbachia were abundant in the fruits of 'Kyoho'. These identified microbes are main components of the microbial communities, and could be important regulators of grapevine growth and development. This study revealed the differences in the microbial compositions between 'Kyoho' and its bud mutant, and these identified microbes will be significant resources for the future researches on the quality regulation and disease control of grapevines.


Assuntos
Anaplasmataceae , Chlorobi , Microbiota , Vitis , Microbiota/genética , Enterobacteriaceae
17.
Sci Total Environ ; 901: 166318, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586504

RESUMO

The concentrations of ground-level ozone (O3) in China have undergone a rapid increase in recent years, resulting in adverse impacts on the air quality and climate change. However, limited research has been conducted on the coastal urban agglomerations with increasingly serious O3 pollution. Therefore, in order to better understand in situ photochemistry, comprehensive field observations of O3 and its precursors, coupled with the model simulation, were conducted in autumn of 2019 at six sites in an urban agglomeration along the coastline of southeastern China. Results indicated that O3 pollution in the southern part of the urban agglomeration was more severe than that in the northern part, due to higher levels of O3 precursors and stronger atmospheric oxidation capacity (AOC) in the southern regions. Oxygenated volatile organic compounds (OVOCs), NO2, and CO dominated the total OH reactivity, and the site-average daytime Ox (O3 + NO2) increments correlated well (R2 = 0.94) with the total OH reactivity of CO and VOCs at these sites except for Quanzhou, where industrial emissions (35.1 %) and solvent usages (33.7 %) dominated the VOC sources. However, vehicle exhausts (31.1 %) were the most predominant contributors to the VOC sources at other sites. The results of model simulations showed that net O3 formation rates were larger at the southern sites. Furthermore, O3 production was mainly controlled by VOCs at most sites, but co-limited by VOCs and NOx at Quanzhou. The most significant VOC groups contributing to O3 formation were aromatics and alkenes, with m/p-xylene, toluene, propene, and ethene being the main contributors at these sites. This study offers a more comprehensive understanding of the characteristics and formation of photochemical pollutions on the scale of the urban areas, indicating the critical need to reduce VOC emissions as a means of mitigating their photochemical effects.

18.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393305

RESUMO

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Assuntos
Cucurbita , Retroelementos , Produtos Agrícolas , Fenótipo , Filogenia , Retroelementos/genética , Cucurbita/genética
19.
Ther Clin Risk Manag ; 19: 599-609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484696

RESUMO

Purpose: To evaluate the accuracy of mixed reality (MR)-guided visualization technology for spinal puncture (MRsp). Methods: MRsp involved the following three steps: 1. Lumbar spine computed tomography (CT) data were obtained to reconstruct virtual 3D images, which were imported into a HoloLens (2nd gen). 2. The patented MR system quickly recognized the spatial orientation and superimposed the virtual image over the real spine in the HoloLens. 3. The operator performed the spinal puncture with structural information provided by the virtual image. A posture fixation cushion was used to keep the subjects' lateral decubitus position consistent. 12 subjects were recruited to verify the setup error and the registration error. The setup error was calculated using the first two CT scans and measuring the displacement of two location markers. The projection points of the upper edge of the L3 spinous process (L3↑), the lower edge of the L3 spinous process (L3↓), and the lower edge of the L4 spinous process (L4↓) in the virtual image were positioned and marked on the skin as the registration markers. A third CT scan was performed to determine the registration error by measuring the displacement between the three registration markers and the corresponding real spinous process edges. Results: The setup errors in the position of the cranial location marker between CT scans along the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) axes of the CT bed measured 0.09 ± 0.06 cm, 0.30 ± 0.28 cm, and 0.22 ± 0.12 cm, respectively, while those of the position of the caudal location marker measured 0.08 ± 0.06 cm, 0.29 ± 0.18 cm, and 0.18 ± 0.10 cm, respectively. The registration errors between the three registration markers and the subject's real L3↑, L3↓, and L4↓ were 0.11 ± 0.09 cm, 0.15 ± 0.13 cm, and 0.13 ± 0.10 cm, respectively, in the SI direction. Conclusion: This MR-guided visualization technology for spinal puncture can accurately and quickly superimpose the reconstructed 3D CT images over a real human spine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...