Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Osteoporos Int ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771526

RESUMO

This large-scale prospective study showed that a significant association between longer duration of daily outdoor walking and reduced osteoporosis risk was found among older adults, particularly among those with a low genetic predisposition to osteoporosis, which highlighted the importance of outdoor walking as a simple, cost-effective adjunct for preventing osteoporosis. PURPOSE: The available cross-sectional data and small-scale studies indicate that outdoor walking benefits bone metabolism. Nevertheless, there is a scarcity of comprehensive prospective research investigating the enduring correlation between outdoor walking and osteoporosis. This study aims to conduct a prospective analysis of the correlation between outdoor walking and osteoporosis while also examining potential variations influenced by genetic susceptibility to osteoporosis. METHODS: 24,700 older adults without osteoporosis at baseline were enrolled. These individuals were followed up until December 31, 2021, during which data on outdoor walking was gathered. The genetic risk score for osteoporosis was comprised of 14 single-nucleotide polymorphisms. RESULTS: 4,586 cases of osteoporosis were identified throughout a median follow-up period of 37.3 months. Those who walked outside for > 30 but ≤ 60 min per day had a hazard ratio (HR) of 0.83 (95% confidence interval (CI): 0.72-0.95) for incident osteoporosis, whereas those who walked outside for > 60 min per day had an HR of 0.60 (95% CI: 0.39-0.92). We found that osteoporosis risk exhibited a declining trend in individuals with low genetic risk. Individuals walking outside for > 60 min per day tended to have the lowest overall osteoporosis risk among those with high genetic risk. CONCLUSIONS: A significant negative correlation exists between an extended period of daily outdoor walking and osteoporosis incidence risk. This correlation is particularly pronounced among individuals with low genetic risk. The results above underscore the significance of outdoor walking as a simple and economical adjunct to public health programs to prevent osteoporosis.

2.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757346

RESUMO

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Assuntos
Adenoviridae , Apoptose , Proliferação de Células , Cisplatino , Proteínas de Ligação a DNA , Endonucleases , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , RNA Interferente Pequeno , Humanos , Feminino , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Adenoviridae/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Apoptose/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Vetores Genéticos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705840

RESUMO

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

4.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714634

RESUMO

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Assuntos
Cristalização , Griseofulvina , Polímeros , Temperatura de Transição , Griseofulvina/química , Cristalização/métodos , Polímeros/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Polivinil/química , Polietilenoglicóis/química , Povidona/química , Vidro/química
5.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656551

RESUMO

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.

6.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38600636

RESUMO

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Assuntos
Anti-Inflamatórios , Sistema Enzimático do Citocromo P-450 , Transferases Intramoleculares , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Estrutura Molecular , Saccharomyces cerevisiae , Hidroxilação , Células Hep G2 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621975

RESUMO

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatias Alcoólicas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Pós , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína Beclina-1 , NF-kappa B/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética
8.
Fitoterapia ; 175: 105983, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679297

RESUMO

Phytochemical investigation on the extract of endophytic fungus Tolypocladium sp. SHJJ1 resulted in the identification of a pair of previously undescribed pyridoxatin atropisomers [1 (M/P)] and three new indole diterpenoids (3-5), together with a pair of known pyridoxatin atropisomers [2 (M/P)] and ten known indole diterpenoids (6-15). Their structures, including their absolute configurations were elucidated by extensive spectroscopic analysis, quantum chemical calculations, and X-ray diffraction. Among the undescribed natural products, [1 (M/P)] that two rapidly interconverting atropisomers are the third example to report in the pyridoxatin atropisomers. Except for compounds 1 (M/P) and 2 (M/P), all other compounds were tested for their cytotoxicity using HepG2, A549, and MCF-7 human cell lines. Compound 9 displayed moderate cytotoxicity against the HepG2, A549, and MCF-7 cell lines with IC50 values of 32.39 ± 1.48 µM, 26.06 ± 1.14 µM, and 31.44 ± 1.94 µM, respectively, which was similar to the positive drug cisplatin (with IC50 values of 32.55 ± 1.76 µM, 18.40 ± 1.43 µM, and 27.31 ± 1.22 µM, respectively).

9.
J Adv Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626873

RESUMO

INTRODUCTION: Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism. OBJECTIVE: Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment. METHODS: In this study, we fed fibronectin type III domain-containing protein 5 (FNDC5, the precursor protein of irisin) knockout mice (FNDC5-/-) with a high-fat diet (HFD) for 10 weeks. The quality of bone mass was assessed by micro-CT analysis, histological staining, and dynamic bone formation. In vitro, the lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was assayed by Oil Red O staining, and the osteogenic differentiation was assayed by alkaline phosphatase staining. Meanwhile, the gene expression in the BMSC-differentiated adipocytes by RNA sequence and the involved pathway of irisin were determined by western blot and qRT-PCR were performed. RESULTS: The FNDC5-/- mice fed with a HFD showed an increased body weight, fat content of the bone marrow and bone, and a decreased bone formation compared with those with a standard diet (SD). In vitro, irisin inhibited the differentiation of BMSCs into adipocytes and alleviated the inhibition of osteogenesis derived from BMSCs by the adipocyte supernatant. RNA sequence and blocking experiment showed that irisin reduced the production of interleukin 6 (IL-6) in adipocytes through downregulating the TLR4/MyD88/NF-κB pathway. Immunofluorescence staining of bone marrow further confirmed an increased IL-6 expression in the FNDC5-/- mice fed with HFD compared with those fed with SD, which suffered serious bone loss. CONCLUSION: Irisin downregulates activation of the TLR4/MyD88/NF-κB pathway, thereby reducing IL-6 production in adipocytes to enhance the osteogenesis of BMSCs. Thus, the rescue of osteogenesis of BMSCs, initially inhibited by IL-6, is a potential therapeutic target to mitigate obesity-induced osteoporosis.

10.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634322

RESUMO

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

11.
Front Med (Lausanne) ; 11: 1284207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549874

RESUMO

Introduction: To develop and validate a comprehensive prognostic model for the mid-to-long term mortality risk among ≥50-year-old osteoporotic fracture (OPF) surgical patients. Methods: Our retrospective investigation included data from the Osteoporotic Fracture Registration System established by the Affiliated Kunshan Hospital of Jiangsu University, and involved 1,656 patients in the development set and 675 patients in the validation set. Subsequently, we employed a multivariable Cox regression model to establish a 3-year mortality predicting nomogram, and the model performance was further evaluated using C-index and calibration plots. Decision curve analysis (DCA) was employed to assess feasibility of the clinical application of this model. Results: Using six prognostic indexes, namely, patient age, gender, the American Society of Anesthesiologists (ASA) score, the Charlson comorbidity index (CCI), fracture site, and fracture liaison service (FLS), we generated a simple nomogram. The nomogram demonstrated satisfactory discrimination within the development (C-index = 0.8416) and validation (C-index = 0.8084) sets. Using calibration plots, we also revealed good calibration. The model successfully classified patients into different risk categories and the results were comparable in both the development and validation sets. Finally, a 1-70% probability threshold, according to DCA, suggested that the model has promise in clinical settings. Conclusion: Herein, we offer a robust tool to estimating the 3-year all-cause mortality risk among elderly OPF surgical patients. However, we recommend further assessments of the proposed model prior to widespread clinical implementation.

12.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38498333

RESUMO

Although Taxodium hybrid 'Zhongshanshan' 406 (Taxodium mucronatum Tenore × Taxodium distichum; Taxodium 406) is an extremely flooding-tolerant woody plant, the physiological and molecular mechanisms underlying acclimation of its roots to long-term flooding remain largely unknown. Thus, we exposed saplings of Taxodium 406 to either non-flooding (control) or flooding for 2 months. Flooding resulted in reduced root biomass, which is in line with lower concentrations of citrate, α-ketoglutaric acid, fumaric acid, malic acid and adenosine triphosphate (ATP) in Taxodium 406 roots. Flooding led to elevated activities of pyruvate decarboxylase, alcohol dehydrogenase and lactate dehydrogenase, which is consistent with higher lactate concentration in the roots of Taxodium 406. Flooding brought about stimulated activities of superoxide dismutase and catalase and elevated reduced glutathione (GSH) concentration and GSH/oxidized glutathione, which is in agreement with reduced concentrations of O2- and H2O2 in Taxodium 406 roots. The levels of starch, soluble protein, indole-3-acetic acid, gibberellin A4 and jasmonate were decreased, whereas the concentrations of glucose, total non-structural carbohydrates, most amino acids and 1-aminocyclopropane-1-carboxylate (ACC) were improved in the roots of flooding-treated Taxodium 406. Underlying these changes in growth and physiological characteristics, 12,420 mRNAs and 42 miRNAs were significantly differentially expressed, and 886 miRNA-mRNA pairs were identified in the roots of flooding-exposed Taxodium 406. For instance, 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8) was a target of Th-miR162-3p and 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4) was a target of Th-miR166i, and the downregulation of Th-miR162-3p and Th-miR166i results in the upregulation of ACS8 and ACO4, probably bringing about higher ACC content in flooding-treated roots. Overall, these results indicate that differentially expressed mRNA and miRNAs are involved in regulating tricarboxylic acid cycle, ATP production, fermentation, and metabolism of carbohydrates, amino acids and phytohormones, as well as reactive oxygen species detoxification of Taxodium 406 roots. These processes play pivotal roles in acclimation to flooding stress. These results will improve our understanding of the molecular and physiological bases underlying woody plant flooding acclimation and provide valuable insights into breeding-flooding tolerant trees.


Assuntos
MicroRNAs , Taxodium , Transcriptoma , Taxodium/genética , Peróxido de Hidrogênio/metabolismo , Aclimatação , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Carboidratos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo
13.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551071

RESUMO

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Cistite Intersticial , Receptor 3 Toll-Like , Urotélio , Urotélio/patologia , Urotélio/metabolismo , Cistite Intersticial/patologia , Cistite Intersticial/metabolismo , Cistite Intersticial/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Humanos , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Transdução de Sinais , Feminino , Animais , Proliferação de Células , Masculino , Análise de Célula Única , Diferenciação Celular
14.
Genomics ; 116(3): 110838, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537807

RESUMO

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.

15.
Int J Biol Macromol ; 261(Pt 2): 129862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309409

RESUMO

Osteoarthritis is a long-term degenerative condition of the joints that is characterized by the breakdown of cartilage and inflammation of the synovial membrane. The presence of an inflammatory microenvironment and the degradation of the extracellular matrix produced by chondrocytes leads to the aggravation of cartilage injury, hindering the treatment of osteoarthritis. A promising approach to address this issue is to apply a combined strategy that is sensitive to the specific conditions in osteoarthritic joints and possesses properties that can reduce inflammation and promote cartilage healing. Here, inspired by the structure of chocolate-covered peanuts, we developed an injectable, environment-responsive bilayer hydrogel microsphere using microfluidics technology. The microsphere applied chondroitin sulfate methacryloyl (ChsMA) as its core and was coated with a methacryloyl gelatin (GelMA) shell that was loaded with celecoxib (CLX) liposomes (ChsMA+CLX@Lipo@GelMA). CLX was released from the liposomes when the GelMA shell rapidly degraded in response to the osteoarthritic microenvironment and suppressed the generation of inflammatory agents, demonstrating a beneficial impact of the outer shell in reducing inflammation. While the inner methacryloyl microsphere core degraded, chondroitin sulfate was released to promote chondrocyte anabolism and facilitate cartilage repair. Thus, the synthesized bilayer hydrogel microspheres hold great potential for treating osteoarthritis.


Assuntos
Hidrogéis , Osteoartrite , Humanos , Hidrogéis/química , Gelatina/química , Sulfatos de Condroitina , Microesferas , Lipossomos , Osteoartrite/tratamento farmacológico , Inflamação
16.
Aging Male ; 27(1): 2310308, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38317318

RESUMO

OBJECTIVE: As people get older, the innate and acquired immunity of the elderly are affected, resulting in immunosenescence. Prealbumin (PAB), transferrin (TRF), and albumin (ALB) are commonly used markers to monitor protein energy malnutrition (PEM). However, their relationship with the immune system has not been fully explored. METHODS: In our study, a total of 93 subjects (≥65 years) were recruited from Tongji Hospital between January 2015 and February 2017. According to the serum levels of these proteins (PAB, TRF, and ALB), we divided the patients into the high serum protein group and the low serum protein group. Then, we compared the percent expression of lymphocyte subsets between two groups. RESULTS: All the low serum protein groups (PAB, TRF, and ALB) had significant decreases in the percentage of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells and significant increases in the percentage of CD8+ cells, CD8+CD28- cells. PAB, TRF, and ALB levels revealed positive correlations with CD4/CD8 ratio, proportions of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells, and negative correlation with proportions of CD8+ cells, CD8+CD28- cells. CONCLUSIONS: This study suggested PAB, TRF, and ALB could be used as immunosenescence indicators. PEM might accelerate the process of immunosenescence in elderly males.


Assuntos
Imunossenescência , Pré-Albumina , Masculino , Humanos , Idoso , Transferrina , Antígenos CD28 , Proteínas Sanguíneas
17.
Biomaterials ; 306: 122475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306733

RESUMO

Although tumor-infiltrating T lymphocytes (TIL-Ts) play a crucial role in solid tumor immunotherapy, their clinical application has been limited because of the immunosuppressive microenvironment. Herein, we developed an injectable hydrogel microsphere-integrated training court (MS-ITC) to inspire the function of TIL-Ts and amplify TIL-Ts, through grafting with anti-CD3 and anti-CD28 antibodies and bovine serum albumin nanoparticles encapsulated with IL-7 and IL-15. MS-ITC provided the T-cell receptor and co-stimulatory signals required for TIL-Ts activation and IL-7/IL-15 signals for TIL-Ts expansion. Afterward, the MS-ITC was injected locally into the osteosarcoma tumor tissue in mice. MS-ITC suppressed the growth of primary osteosarcoma by more than 95 %, accompanied with primed and expanded TIL-Ts in the tumor tissues, compromising significantly increased CD8+ T and memory T cells, thereby enhancing the anti-tumor effect. Together, this work provides an injectable hydrogel microsphere-integrated training platform capable of inspiring TIL-Ts potential for a range of solid tumor immunotherapy.


Assuntos
Interleucina-15 , Neoplasias , Animais , Camundongos , Hidrogéis , Interleucina-7 , Microesferas , Citotoxicidade Imunológica , Linfócitos do Interstício Tumoral , Linfócitos T , Interleucina-2/farmacologia , Ativação Linfocitária , Microambiente Tumoral
18.
Regen Biomater ; 11: rbad096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173773

RESUMO

The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors. In this study, a poly (l-lactic acid) (PLLA)/hyaluronic acid (HA)-based nanofibrous membrane was fabricated using the coaxial electrospinning technique. The incorporation of irisin into the core-shell structure of PLLA/HA nanofibers (PLLA/HA@Irisin) achieved its sustained release. In vitro experiments demonstrated that the PLLA/HA@Irisin membranes exhibited favorable biocompatibility. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was improved by PLLA/HA@Irisin, as evidenced by a significant increase in alkaline phosphatase activity and matrix mineralization. Mechanistically, PLLA/HA@Irisin significantly enhanced the mitochondrial function of BMMSCs via the activation of the sirtuin 3 antioxidant pathway. To assess the therapeutic effectiveness, PLLA/HA@Irisin membranes were implanted in situ into critical-sized calvarial defects in rats. The results at 4 and 8 weeks post-surgery indicated that the implantation of PLLA/HA@Irisin exhibited superior efficacy in promoting vascularized bone formation, as demonstrated by the enhancement of bone matrix synthesis and the development of new blood vessels. The results of our study indicate that the electrospun PLLA/HA@Irisin nanofibers possess characteristics of a biomimetic periosteum, showing potential for effectively treating critical-sized bone defects by improving the mitochondrial function and maintaining redox homeostasis of BMMSCs.

19.
Biomaterials ; 306: 122480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271787

RESUMO

In this work, a promising treatment strategy for triggering robust antitumor immune responses in transarterial chemoembolization of hepatocellular carcinoma (HCC) is presented. The zeolitic imidazolate framework nanoparticles loaded with hypoxia-activated prodrug tirapazamine and immune adjuvant resiquimod facilitated in situ generation of nanovaccine via a facile approach. The nanovaccine can strengthen the ability of killing the liver cancer cells under hypoxic environment, while was capable of improving immunogenic tumor microenvironment and triggering strong antitumor immune responses by increasing the primary and distant intratumoral infiltration of immune cells such as cytotoxic T cells. Moreover, a porous microcarrier, approved by FDA as pharmaceutical excipient, was designed to achieve safe and effective delivery of the nanovaccine via transarterial therapy in rabbit orthotopic VX2 liver cancer model. The microcarrier exhibited the characteristics of excellent drug loading and occlusion of peripheral artery. The collaborative delivery of the microcarrier and nanovaccine demonstrated an exciting inhibitory effect on solid tumors and tumor metastases, which provided a great potential as novel combination therapy for HCC interventional therapy.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Coelhos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanovacinas , Hipóxia/tratamento farmacológico , Microambiente Tumoral
20.
Cardiovasc Diabetol ; 23(1): 28, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218882

RESUMO

BACKGROUND: Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS: A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS: Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (ß = -0.25; P < 0.001), rather than body mass index (ß = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS: With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.


Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Sarcopenia , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Sarcopenia/diagnóstico por imagem , Sarcopenia/epidemiologia , Qualidade de Vida , Biomarcadores , Volume Sistólico/fisiologia , Peptídeo Natriurético Encefálico , Imageamento por Ressonância Magnética , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Fragmentos de Peptídeos , Músculo Esquelético/diagnóstico por imagem , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...