Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(38): 27904-27927, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39224639

RESUMO

Periodontitis is a chronic inflammatory disease primarily caused by dental plaque, which is a significant global public health concern due to its high prevalence and severe impact on oral, and even systemic diseases. The current therapeutic plan focuses on three objectives: pathogenic bacteria inhibition, inflammation control, and osteogenic differentiation induction. Existing treatments still have plenty of drawbacks, thus, there is a pressing need for novel methods to achieve more effective treatment effects. Nanomaterials, as emerging materials, have been proven to exert their inherent biological properties or serve as stable drug delivery platforms, which may offer innovative solutions in periodontitis treatment. Nanomaterials utilized in periodontitis treatment fall into two categories, organic and inorganic nanomaterials. Organic nanomaterials are known for their biocompatibility and their potential to promote tissue regeneration and cell functions, including natural and synthetic polymers. Inorganic nanomaterials, such as metal, oxides, and mesoporous silica nanoparticles, exhibit unique physicochemical properties that make them suitable as antibacterial agents and drug delivery platforms. The inorganic nanosurface provides terrain induction for cell migration and osteogenic regeneration at defect sites by introducing different surface morphologies. Inorganic nanomaterials also play a role in antibacterial photodynamic therapy (aPDT) for eliminating pathogenic bacteria in the oral cavity. In this review, we will introduce multiple forms and applications of nanomaterials in periodontitis treatment and focus on their roles in addressing the key therapeutic objectives, to emphasize their promising future in achieving more effective and patient-friendly approaches toward periodontal tissue regeneration and overall health.

2.
J Control Release ; 375: 155-177, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39242033

RESUMO

Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.

3.
Nanoscale ; 16(15): 7363-7377, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38411498

RESUMO

Reactive oxygen species (ROS) are an array of derivatives of molecular oxygen that participate in multiple physiological processes under the control of redox homeostasis. However, under pathological conditions, the over-production of ROS often leads to oxidative stress and inflammatory reactions, indicating a potential therapeutic target. With the rapid development of nucleic acid nanotechnology, scientists have exploited various DNA nanostructures with remarkable biocompatibility, programmability, and structural stability. Among these novel organic nanomaterials, a group of skeleton-like framework nucleic acid (FNA) nanostructures attracts the most interest due to their outstanding self-assembly, cellular endocytosis, addressability, and functionality. Surprisingly, different FNAs manifest similarly satisfactory antioxidative and anti-inflammatory effects during their biomedical application process. First, they are intrinsically endowed with the ability to neutralize ROS due to their DNA nature. Therefore, they are extensively involved in the complicated inflammatory signaling network. Moreover, the outstanding editability of FNAs also allows for flexible modifications with nucleic acids, aptamers, peptides, antibodies, low-molecular-weight drugs, and so on, thus further strengthening the targeting and therapeutic ability. This review focuses on the ROS-scavenging potential of three representative FNAs, including tetrahedral framework nucleic acids (tFNAs), DNA origami, and DNA hydrogels, to summarize the recent advances in their anti-inflammatory therapy applications. Although FNAs exhibit great potential in treating inflammatory diseases as promising ROS scavengers, massive efforts still need to be made to overcome the emerging challenges in their clinical translation.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Ácidos Nucleicos/química , Espécies Reativas de Oxigênio , DNA/química , Nanoestruturas/química , Anti-Inflamatórios
4.
Adv Sci (Weinh) ; 11(1): e2305622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984862

RESUMO

There has been considerable interest in gene vectors and their role in regulating cellular activities and treating diseases since the advent of nucleic acid drugs. MicroRNA (miR) therapeutic strategies are research hotspots as they regulate gene expression post-transcriptionally and treat a range of diseases. An original tetrahedral framework nucleic acid (tFNA) analog, a bioswitchable miR inhibitor delivery system (BiRDS) carrying miR inhibitors, is previously established; however, it remains unknown whether BiRDS can be equipped with miR mimics. Taking advantage of the transport capacity of tetrahedral framework nucleic acid (tFNA) and upgrading it further, the treatment outcomes of a traditional tFNA and BiRDS at different concentrations on TGF-ß- and bleomycin-induced fibrosis simultaneously in vitro and in vivo are compared. An upgraded traditional tFNA is designed by successfully synthesizing a novel BiRDS, carrying a miR mimic, miR-27a, for treating skin fibrosis and inhibiting the pyroptosis pathway, which exhibits stability and biocompatibility. BiRDS has three times higher efficiency in delivering miRNAs than the conventional tFNA with sticky ends. Moreover, BiRDS is more potent against fibrosis and pyroptosis-related diseases than tFNAs. These findings indicate that the BiRDS can be applied as a drug delivery system for disease treatment.


Assuntos
MicroRNAs , Ácidos Nucleicos , Humanos , Piroptose , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Sistemas de Liberação de Medicamentos
5.
Tissue Eng Part B Rev ; 29(2): 91-102, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36006374

RESUMO

The periosteum is quite essential for bone repair. The excellent osteogenic properties of periosteal tissue make it a popular choice for accelerated osteogenesis in tissue engineering. With advances in research and technology, renewed attention has been paid to the periosteum. Recent studies have shown that the complexity of the periosteum is not only limited to histological features but also includes genetic and phenotypic features. In addition, the periosteum is proved to be quite site-specific in many ways. This brings challenges to the selection of periosteal donor sites. Limited understanding of the periosteum sets up barriers to developing optimal tissue regeneration strategies. A better understanding of periosteum could lead to better applications. Therefore, we reviewed the histological structure, gene expression, and function of the periosteum from both the commonality and personalization. It aims to discuss some obscure issues and untapped potential of periosteum and artificial periosteum in the application, where further theoretical research is needed. Overall, the site-specificity of the periosteum needs to be fully considered in future applications. However, significant further work is needed in relevant clinical trials to promote the further development of artificial periosteum.


Assuntos
Regeneração Óssea , Periósteo , Humanos , Periósteo/metabolismo , Osteogênese , Engenharia Tecidual , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA