Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 59(9): 1889-1904, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893960

RESUMO

Allelopathy is mediated by plant-derived secondary metabolites (allelochemicals) which are released by donor plants and affect the growth and development of receptor plants. The plant root is the first organ which senses soil allelochemicals this results in the production of a shorter primary root. However, the mechanisms underlying this process remain elusive. Here, we report that a model allelochemical benzoic acid (BA) inhibited primary root elongation of Arabidopsis seedlings by reducing the sizes of both the meristem and elongation zones, and that auxin signaling affected this process. An increase in auxin level in the root tips was associated with increased expression of auxin biosynthesis genes and auxin polar transporter AUX1 and PIN2 genes under BA stress. Mutant analyses demonstrated that AUX1 and PIN2 rather than PIN1 were required for the inhibition of primary root elongation during BA exposure. Furthermore, BA stimulated ethylene evolution, whereas blocking BA-induced ethylene signaling with an ethylene biosynthesis inhibitor (Co2+), an ethylene perception antagonist (1-methylcyclopropene) or ethylene signaling mutant lines etr1-3 and ein3eil1 compromised BA-mediated inhibition of root elongation and up-regulation of auxin biosynthesis-related genes together with AUX1 and PIN2, indicating that ethylene signal was involved in auxin-mediated inhibition of primary root elongation during BA stress. Further analysis revealed that the BA-induced reactive oxygen species (ROS) burst contributed to BA-mediated root growth inhibition without affecting auxin and ethylene signals. Taken together, our results reveal that the allelochemical BA inhibits root elongation by increasing auxin accumulation via stimulation of auxin biosynthesis and AUX1/PIN2-mediated auxin transport via stimulation of ethylene production and an auxin/ethylene-independent ROS burst.


Assuntos
Arabidopsis/fisiologia , Ácido Benzoico/farmacologia , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais
2.
Plant Cell Environ ; 41(9): 2093-2108, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29469227

RESUMO

Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.


Assuntos
Arachis/metabolismo , Arachis/microbiologia , Ascomicetos/fisiologia , Ácidos Indolacéticos/metabolismo , Nodulação/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Bradyrhizobium/fisiologia , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/ultraestrutura , Transdução de Sinais/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...