Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(3): 600-608, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38774831

RESUMO

Streptomyces offer a wealth of naturally occurring compounds with diverse structures, many of which possess significant pharmaceutical values. However, new product exploration and increased yield of specific compounds in Streptomyces have been technically challenging due to their slow growth rate, complex culture conditions and intricate genetic backgrounds. In this study, we screened dozens of Streptomyces strains inhabiting in a plant rhizosphere for fast-growing candidates, and further employed CRISPR/Cas-based engineering techniques for stepwise refinement of a particular strain, Streptomyces sp. A-14 that harbors a 7.47 Mb genome. After strategic removal of nonessential genomic regions and most gene clusters, we reduced its genome size to 6.13 Mb, while preserving its growth rate to the greatest extent. We further demonstrated that cleaner metabolic background of this engineered strain was well suited for the expression and characterization of heterologous gene clusters, including the biosynthetic pathways of actinorhodin and polycyclic tetramate macrolactams. Moreover, this streamlined genome is anticipated to facilitate directing the metabolic flux towards the production of desired compounds and increasing their yields.

2.
Expert Opin Drug Deliv ; 21(2): 347-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406829

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are evolving as a prominent determinant in cancer occurrence and development and are functionally found to suppress T cells in cancer. Not much research is done regarding its involvement in viral infections. This research was designed to investigate the role of MDSCs in hepatitis B virus (HBV) infection and how targeting these cells with our novel all-trans retinoic acid encapsulated liposomal formulation could improve immunotherapy in C57BL/6 mice. METHODS: Ten micrograms (10 µg) of plasmid adeno-associated virus (pAAV/HBV 1.2, genotype A) was injected hydrodynamically via the tail vein of C57BL/6 mice. An all-trans retinoic acid encapsulated liposomal formulation (L-ATRA) with sustained release properties was used in combination with tenofovir disoproxil fumarate (TDF), a nucleotide analog reverse transcriptase inhibitor (nRTI) to treat the HBV infection. The L-ATRA formulation was given at a dose of 5 mg/kg intravenously (IV) twice a week. The TDF was given orally at 30 mg/kg daily. RESULTS: Our results revealed that L-ATRA suppresses MDSCs in HBV infected mice and enhanced T-cell proliferation in vitro. In vivo studies showed higher and improved immunotherapeutic effect in mice that received L-ATRA and TDF concurrently in comparison with the groups that received monotherapy. Lower HBV DNA copies, lower concentrations of HBsAg and HBeAg, lower levels of ALT and AST and less liver damage were seen in the mice that received the combination therapy of L-ATRA + TDF. CONCLUSIONS: In effect, targeting MDSCs with the combination of L-ATRA and TDF effectively reduced mMDSC and improved immunotherapy in the HBV infected mice. Targeting MDSCs could provide a breakthrough in the fight against hepatitis B virus infection.


Assuntos
Hepatite B Crônica , Hepatite B , Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Vírus da Hepatite B/genética , Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Antígenos E da Hepatite B/farmacologia , Antígenos E da Hepatite B/uso terapêutico , Resultado do Tratamento , Camundongos Endogâmicos C57BL , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Hepatite B/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Neoplasias/tratamento farmacológico
3.
MAbs ; 14(1): 2115205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36041060

RESUMO

T cells are one of the most important effector cells in cancer immunotherapy. Various T cell-dependent bispecific antibody (TDB) drugs that engage T cells for targeted cancer cell lysis are being developed. Here, we describe supra-molecular T-cell redirecting antibody fragment-anchored liposomes (TRAFsomes) and report their immune modulation and anti-cancer effects. We found that TRAFsomes containing different copies of anti-CD3 fragments displayed different T cell modulation profiles, showing that optimization of surface density is needed to define the therapeutic window for potentiating cancer cell-specific immune reactions while minimizing nonspecific side effects. Moreover, small molecular immunomodulators may also be incorporated by liposomal encapsulation to drive CD8 + T cell biased immune responses. In vivo studies using human peripheral blood mononuclear cell reconstituted mouse models showed that TRAFsomes remained bounded to human T cells and persisted for more than 48 hours after injection. However, only TRAFsomes containing a few anti-CD3 (n = 9) demonstrated significant T cell-mediated anti-cancer activities to reverse tumor growth. Those with more anti-CD3s (n = 70) caused tumor growth and depletion of human T cells at the end of treatments. These data suggested that TRAFsomes can be as potent as traditional TDBs and the liposomal structure offers great potential for immunomodulation and improvement of the therapeutic index.Abbreviation: Chimeric antigen receptor T cells (CAR-T cells), Cytokine release syndrome (CRS) Cytotoxic T cell (CTL) Effector: target ratios (E:T ratios), Heavy chain (HC) Immune-related adverse events (irAE), Large unilamellar vesicle (LUV), Peripheral blood mononuclear cells (PBMCs, Single-chain variable fragment (scFv), T cell-dependent bispecific antibody (TDB), T cell redirecting antibody fragment-anchored liposomes (TRAFsomes), Methoxy poly-(ethylene glycol) (mPEG).


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos de Cadeia Única , Animais , Complexo CD3 , Humanos , Imunoterapia , Leucócitos Mononucleares/metabolismo , Lipossomos/metabolismo , Lipossomos/uso terapêutico , Camundongos
4.
Front Immunol ; 13: 829391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493504

RESUMO

Myeloid Derived Suppressor Cells (MDSCs) play important roles in constituting the immune suppressive environment promoting cancer development and progression. They are consisted of a heterogeneous population of immature myeloid cells including polymorphonuclear MDSC (PMN-MDSC) and monocytes MDSC (M-MDSC) that are found in both the systemic circulation and in the tumor microenvironment (TME). While previous studies had shown that all-trans retinoic acid (ATRA) could induce MDSC differentiation and maturation, the very poor solubility and fast metabolism of the drug limited its applications as an immune-modulator for cancer immunotherapy. We aimed in this study to develop a drug encapsulated liposome formulation L-ATRA with sustained release properties and examined the immuno-modulation effects. We showed that the actively loaded L-ATRA achieved stable encapsulation and enabled controlled drug release and accumulation in the tumor tissues. In vivo administration of L-ATRA promoted the remodeling of the systemic immune homeostasis as well as the tumor microenvironment. They were found to promote MDSCs maturation into DCs and facilitate immune responses against cancer cells. When used as a single agent treatment, L-ATRA deterred tumor growth, but only in immune-competent mice. In mice with impaired immune functions, L-ATRA at the same dose was not effective. When combined with checkpoint inhibitory agents, L-ATRA resulted in greater anti-cancer activities. Thus, L-ATRA may present a new IO strategy targeting the MDSCs that needs be further explored for improving the immunotherapy efficacy in cancer.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Liberação Controlada de Fármacos , Homeostase , Terapia de Imunossupressão , Lipossomos , Camundongos , Retinoides/metabolismo , Tretinoína/metabolismo
5.
Curr Opin Biotechnol ; 75: 102699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35231771

RESUMO

Natural products derived from bacterial secondary metabolites contribute greatly to the pharmaceutical industry. Heterologous expression of natural product biosynthetic pathways can remarkably improve the yield of target products and lead to the discovery of numerous derivatives. Therefore, high-throughput analytical methods are urgently needed for the detection of natural products. Biosensors allow fast, real-time detection and efficient screening. With the growth of in-depth knowledge of biosensors, biosensors with high efficiency and specificity are exploited for broader applications. Here, we summarized how biosensors targeting different metabolites were constructed and optimized and the applications of metabolite-based biosensors in heterologous bacterial hosts. Finally, we prospected the future development of biosensors, including combinations with other advanced technologies, to solve the challenges hampering wider applications.


Assuntos
Produtos Biológicos , Técnicas Biossensoriais , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Técnicas Biossensoriais/métodos , Vias Biossintéticas , Indústria Farmacêutica/métodos
6.
ACS Appl Mater Interfaces ; 13(47): 55902-55912, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793125

RESUMO

Melittin is a potential anticancer candidate with remarkable antitumor activity and ability to overcome tumor drug resistance. However, the clinical applications of melittin are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity after systemic administration. Here, a biocompatible and stable melittin-loaded lipid-coated polymeric nanoparticle (MpG@LPN) formulation that contains a melittin/poly-γ-glutamic acid nanoparticle inner core, a lipid membrane middle layer, and a polyethylene glycol (PEG) and PEG-targeting molecule outer shell was designed. The formulations were prepared by applying a self-assembly procedure based on intermolecular interactions, including electrostatic attraction and hydrophobic effect. The core-shell MpG@LPN presented high efficiency for melittin encapsulation and high stability in physiological conditions. Hemolysis and cell proliferation assays showed that the PEG-modified MpG@LPN had almost no hemolytic activity and nonspecific cytotoxicity even at high concentrations. The modification of targeting molecules on the MpG@LPNs allowed for the selective binding with target tumor cells and cytolytic activity via apoptosis induction. In vivo experiments revealed that MpG@LPNs can remarkably inhibit the growth of tumors without the occurrence of hemolysis and tissue toxicity. Results suggested that the developed MpG@LPN with a core-shell structure can effectively address the main obstacles of melittin in clinical applications and has great potential in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Meliteno/farmacologia , Nanopartículas/química , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Hemólise/efeitos dos fármacos , Humanos , Lipídeos/química , Meliteno/química , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Polietilenoglicóis/síntese química , Propriedades de Superfície
7.
J Microbiol Biotechnol ; 31(2): 259-271, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33323670

RESUMO

Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Catecóis/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Óperon , Regiões Promotoras Genéticas , Pseudomonas putida/genética
8.
Asian J Pharm Sci ; 15(6): 752-758, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33363630

RESUMO

The absorption of peptides and proteins delivered orally is minimum because of the intestine epithelial barrier. There are few known active transport mechanisms for macromolecules including the neonatal Fc Receptor (FcRn) for the absorption and secretion of IgGs in infant and adult intestine. We had previously described the FnAb-8 protein that could bind to hFcRn tightly at pH 6.0 but barely at pH 7.4. In this study, we examined its uptake, biodistribution and pharmacokinetics after peroral administration in both wild-type and human FcRn transgenic (Tg) mice. FnAb-8 was modified to contain trans-cyclooctene (TCO) which could interact with 18F labeled tetrazine in situ via the bioorthogonal inverse-electron-demand Diels-Alder reaction. We showed that FnAb-8 had a tendency to distribute and persist in the Tg mice intestine for an extended duration of time. It could also be absorbed into the circulation and distributed systemically over a long period of time up to 172 h. The improvement in oral uptake and concentration in the intestine tissue may be valuable for designing oral delivery of biopharmaceuticals, especially for diseases involving the gastric intestinal tissue.

9.
Biochem Biophys Res Commun ; 529(2): 398-403, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703442

RESUMO

It is widely reported that BAT is more frequently observed in patients during the winter season, and its activities could vary significantly under different conditions. However, whether this phenomenon is entirely caused by low temperature or other factors is not very clear. In this study, we tried to explore the seasonal fluctuation of FDG-PET BAT using mouse models that were from the same genetic breed and raised in a well-controlled environment. We also compared these variations with the effects of fasting and cold stimulation on BAT activities in these mice. In overnight fasted mice, the FDG-PET BAT was the highest in standardized uptake value (SUV) in the winter season. The values were much lower in all other seasons, especially in the summer. Compared to regular feeding, overnight fasting reduced BAT SUV, and refeeding after fasting could fully recover BAT activities. Fasted mice also did not respond to cold environment stimulation. After refeeding, their BAT thermogenic activities became normal. These results suggest that BAT FDG-PET SUV measurements vary significantly with the season and highlight the importance of taking into account the seasonal effect and fasting status in BAT evaluation studies using FDG-PET imaging.


Assuntos
Tecido Adiposo Marrom/fisiologia , Jejum , Fluordesoxiglucose F18/metabolismo , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/diagnóstico por imagem , Animais , Feminino , Fluordesoxiglucose F18/análise , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons/métodos , Estações do Ano
10.
Int J Nanomedicine ; 15: 483-495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158206

RESUMO

BACKGROUND: The complex preparation procedures and severe toxicities are two major obstacles facing the wide use of chimeric antigen receptor-modified T (CAR-T) cells in clinical cancer immunotherapy. The nanotechnology-based T cell temporary CAR modification may be a potential approach to solve these problems and make the CAR-T cell-based tumor therapy feasible and broadly applicable. METHODS: A series of plasmid DNA-loaded self-assembled nanoparticles (pDNA@SNPsx/y) prepared from adamantane-grafted polyamidoamine (Ad-PAMAM) dendrimers of different generations (G1 or G5) and cyclodextrin-grafted branched polyethylenimine (CD-PEI) of different molecular weights (800, 2000, or 25,000 Da) were characterized and evaluated. The detailed physicochemical properties, cellular interaction, and cytotoxicity of selected pDNA@SNPG1/800 were systematically investigated. Thereafter, the epidermal growth factor receptor variant III (EGFRvIII) CAR-expression plasmid vector (pEGFRvIII-CAR) was constructed and encapsulated into SNPG1/800. The resulting pEGFRvIII-CAR@SNPG1/800 was used for Jurkat cell transient transfection, and the EGFRvIII-CAR expressed in transfected cells was measured by flow cytometry and Western blot. Finally, the response of EGFRvIII CAR-positive Jurkat T cell to target tumor cell was evaluated. RESULTS: The pDNA@SNPG1/800 showed the highest efficacy in Jurkat cell gene transfection and exhibited low cytotoxicity. pEGFRvIII-CAR@SNPG1/800 can efficiently deliver pEGFRvIII-CAR into Jurkat T cells, thereby resulting in transient EGFRvIII-CAR expression in transfected cells. EGFRvIII-CAR that is present on the cell membrane enabled Jurkat T cells to recognize and bind specifically with EGFRvIII-positive tumor cells. CONCLUSION: These results indicated that pEGFRvIII-CAR@SNPG1/800 can effectively achieve T-cell transient CAR modification, thereby demonstrating considerable potential in CAR-T cancer therapy.


Assuntos
Receptores ErbB/genética , Técnicas de Transferência de Genes , Imunoterapia Adotiva/métodos , Nanopartículas/química , Linfócitos T/fisiologia , Linhagem Celular Tumoral , Dendrímeros/química , Vetores Genéticos , Humanos , Iminas/química , Imunoterapia , Células Jurkat , Peso Molecular , Polietilenos/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Transfecção/métodos
11.
J Control Release ; 320: 168-178, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31926193

RESUMO

Ursolic acid (UA) is a potent triterpenoid compound found in plants and fruits with activities modulating key cell signaling pathways involving STATs, NF-κB, and TRAIL. But it's highly hydrophobic and very poorly soluble in nature. It had been prepared as nanocrystals, solid dispersion and loaded in nanoparticles but the achieved systemic exposure and circulation half-life were not ideal. We reported the development of UA-liposomes made by HPßCD assisted active loading. Compared to lipid suspensions of UA (Lipid-UA) with similar lipid composition, the novel process enabled the formation of UA-Ca crystalline structures inside the liposomes and therefore sustained release of UA in vivo. While the UA-liposomes were not generally toxic towards 4T1 triple negative breast cancer cells, they could effectively modulate CD4+CD25+Foxp3+ T cells from 4T1 tumor bearing mouse by inhibiting STAT5 phosphorylation and IL-10 secretion. In vivo administration of UA-liposomes at 10 mg/kg dose led to reduced numbers of myeloid derived suppressor cells (MDSCs) and regulatory T cells (Tregs) residing in tumor tissues. These changes signified the correction of the tumor mediated immune-suppressive microenvironment. The UA-liposomes treatment alone was already effective in deterring tumor growth. Such a formulation may be highly promising as an immunotherapy agent and be combined with chemotherapeutics or targeted drugs.


Assuntos
Neoplasias , Triterpenos , Animais , Imunoterapia , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral , Ácido Ursólico
12.
Int J Pharm ; 575: 118898, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846730

RESUMO

Although RNA interference (RNAi) technology shows great potential in cancer treatment, the tumor target delivery and sufficient cytosolic transport of RNAi agents are still the main obstacles for its clinical applications. Herein, we report a functional supramolecular self-assembled nanoparticle vector for RNAi agent loading and tumor target therapy. Molecular block adamantane-grafted poly(ethylene glycol) (Ad-PEG) was modified with epidermal growth factor receptor (EGFR)-specific binding ligand GE11 or pH-sensitive fusogenic peptide GALA and then used for self-assembly with cyclodextrin-grafted branched polyethylenimine (CD-PEI), adamantane-grafted polyamidoamine dendrimer (Ad-PAMAM), and plasmid DNA containing a small hairpin RNA expression cassette against vascular endothelial growth factor (VEGF) into functional DNA-loaded supramolecular nanoparticles (GE11&GALA-pshVEGF@SNPs) based on molecular recognition and charge interaction. These functional peptides facilitated the target cell binding, internalization, and endosomal escape of GE11&GALA-pshVEGF@SNPs, resulting in increased reporter gene expression and efficient targeted gene silencing. The systemic delivery of the GE11&GALA-pshVEGF@SNPs can efficiently downregulate the intratumoral VEGF protein levels, reduce blood vessel formation, and significantly inhibit A549 xenograft tumor growth. These results reveal the potential of these multifunctional self-assembled nanoparticles as a nucleic acid drug delivery system for the treatment of lung cancer.


Assuntos
DNA/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/terapia , Neovascularização Patológica/tratamento farmacológico , Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética , Células A549 , Adamantano/administração & dosagem , Animais , Feminino , Inativação Gênica , Humanos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Plasmídeos , Polímeros/administração & dosagem , Carga Tumoral/efeitos dos fármacos
13.
RSC Adv ; 9(71): 41628-41638, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541612

RESUMO

Increasing attention has been paid to the toxicity and hazards of antibiotics on non-target organisms in soil ecosystems because redundant antibiotics in the excretion of treated animals are being brought into the soil by way of manure and sewage irrigation. In order to understand the toxic mechanisms of antibiotics in soil ecosystems, the earthworm Eisenia fetida was exposed to 500 mg kg-1 of oxytetracycline (OTC) as a typical antibiotic for 7, 14 and 21 days. The total proteins of E. fetida in each treatment were separated by two-dimensional gel electrophoresis and differential expressed proteins were identified by MALDI-TOF/TOF-MS. A total of 30 proteins were successfully identified and divided into four categories based on the function. It was surprisingly found that more than 50% of identified proteins belong to the actin family, and all of them were down-regulated more than 2.0-fold. In the meantime, the fibrinolytic enzymes, an important protease with plasminogen activator activity, were suppressed in the last two weeks. The validations in the mRNA level were performed using RT-PCR. However, due to the incomplete genome sequence of E. fetida, we failed to identify more proteins response to OTC stress. This study may provide a new insight into the discovery of novel biomarkers for continuous-poured and low-toxicity pollutants.

14.
RSC Adv ; 9(40): 22841-22852, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35702527

RESUMO

The activated sludge process can effectively remove polycyclic aromatic hydrocarbons (PAHs) from wastewater via biodegradation. However, the degradable microorganisms and functional enzymes involved in this process remain unclear. In this study, we successfully employed a laboratory-scale sequential batch reactor to investigate variations in microbial community and protein expression in response to the addition of different PAHs and process time. The analysis of bacterial community structure by 454 pyrosequencing of the 16S rRNA gene indicated that bacteria from Burkholderiales order were dominant in PAHs treated sludge. Mass spectrometry performed with 2D protein profiles of all sludge samples demonstrated that most proteins exhibiting differential expression profiles during the process were derived from Burkholderiales populations; these proteins are involved in DNA replication, fatty acid and glucose metabolism, stress response, protein synthesis, and aromatic hydrocarbon metabolism. Nevertheless, the protein expression profiles indicated that naphthalene, but not anthracene, can induce the expression of PAH-degrading proteins and accelerate its elimination from sludge. Though only naphthalene and anthracene were added into our experimental groups, the differentially expressed enzymes involved in other PAHs (especially biphenyl) metabolism were also detected. This study provides apparent evidence linking the metabolic activities of Burkholderiales populations with the degradation of PAHs in activated sludge processes. Overall, our findings highlighted the successful application of metaproteomics integrated with microbial diversity analysis by high-throughput sequencing technique on the analysis of environmental samples, which could provide a convenience to monitor the changes in proteins expression profiles and their correlation with microbial diversity.

15.
J Biomed Mater Res A ; 103(3): 1045-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24909141

RESUMO

Poly(D,L-lactide-co-glycolide) (PLGA) is widely used in a variety of tissue engineering and drug delivery applications due to its biodegradability and biocompatibility. But PLGA surfaces are usually hydrophobic which limited the loading and seeding capacities for cells, especially semiadherent immune cells. In this paper we described an attempt to improve the hydrophilicity and surface architecture for accommodating dendritic cells (DCs) that are widely used as professional antigen presenting cells in immune therapy of cancer and other diseases. The 3D porous PLGA scaffold was made by solvent casting/salt leaching of PLGA blended with surface functionalized multiwalled carbon nanotubes (F-MWCNTs). The incorporation and dispersion of F-MWCNT in the scaffold structures resulted in not only improved surface hydrophilicity but also nanoscale surface structure that would provide a preferable microenvironment for DCs attachment. We think such a scaffold material may be more desirable for immune cell delivery for immunotherapy.


Assuntos
Antígenos/química , Materiais Biocompatíveis/química , Células Dendríticas/citologia , Ácido Láctico/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Carbono/química , Adesão Celular , Imunoterapia/métodos , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Propriedades de Superfície , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...