Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 117: 109990, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012874

RESUMO

Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Preparações Farmacêuticas , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Imunoterapia/efeitos adversos , Anticorpos/uso terapêutico , Sistemas de Liberação de Medicamentos/efeitos adversos
2.
Front Pharmacol ; 14: 1119431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825156

RESUMO

Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.

3.
Front Immunol ; 13: 1029676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505439

RESUMO

Head and neck squamous cell carcinoma (HNSC) represents one of the most common malignant carcinomas worldwide. Because the 5-year survival rate of patients with HNSC is poor, it is necessary to develop an effective signature for predicting the risk of HNSC. To identify a circadian rhythm (CR)-related predictive signature, we analyzed the RNA-seq data of patients with HNSC from The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Nine CR-related genes (PER2, PER3, GHRL, CSF2, HDAC3, KLF10, PRKAA2, PTGDS, and RORB) were identified to develop a CR-related signature. The area under the curve values for 5-year overall survival were 0.681, 0.700, and 0.729 in the training set, validation set, and an external independent test set (GSE41613), respectively. The Kaplan‒Meier curve analysis showed that the high-risk group had a reduced relapse-free survival compared with the low-risk group in the training set, validation set, and test set (P < 0.05). Finally, we observed that the CR-related gene signature was associated with the tumor immune microenvironment, somatic nucleotide variation, and drug response in HNSC. In conclusion, we developed a circadian rhythm-related gene signature for predicting overall survival in HNSC.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Recidiva Local de Neoplasia , Estimativa de Kaplan-Meier , Microambiente Tumoral
4.
Front Microbiol ; 13: 964112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992691

RESUMO

Acute lung injury (ALI) with uncontrolled inflammatory response has high morbidity and mortality rates in critically ill patients. Pathogen-associated molecular patterns (PAMPs) are involved in the development of uncontrolled inflammatory response injury and associated lethality. In this study, we investigated the inhibit effect of MS19, a microsatellite DNA-derived oligodeoxynucleotide (ODN) with AAAG repeats, on the inflammatory response induced by various PAMPs in vitro and in vivo. In parallel, a microsatellite DNA with AAAC repeats, named as MS19-C, was used as controls. We found that MS19 extensively inhibited the expression of inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α induced by various PAMPs stimulation, including DNA viruses, RNA viruses, bacterial components lipopolysaccharide (LPS), and curdlan, as well as the dsDNA and dsRNA mimics, in primed bone marrow-derived macrophage (BMDM). Other than various PAMPs, MS19 also demonstrated obvious effects on blocking the high mobility group box1 (HMGB1), a representative damage-associated-molecular pattern (DAMP), nuclear translocation and secretion. With the base substitution from G to C, MS19-C has been proved that it has lost the inhibitory effect. The inhibition is associated with nuclear factor kappa B (NF-κB) signaling but not the mitogen-activated protein kinase (MAPK) transduction. Moreover, MS19 capable of inhibiting the IL-6 and TNF-α production and blocking the HMGB1 nuclear translocation and secretion in LPS-stimulated cells was used to treat mice ALI induced by LPS in vivo. In the ALI mice model, MS19 significantly inhibited the weight loss and displayed the dramatic effect on lessening the ALI by reducing consolidation, hemorrhage, intra-alveolar edema in lungs of the mice. Meanwhile, MS19 could increase the survival rate of ALI by downregulating the inflammation cytokines HMGB1, TNF-a, and IL-6 production in the bronchoalveolar lavage fluid (BALF). The data suggest that MS19 might display its therapeutic role on ALI by inhibiting the HMGB1-TLR4-NF-κB signaling pathway.

5.
Front Microbiol ; 13: 948770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832809

RESUMO

Toll-like receptors (TLRs) are key sensors that recognize the pathogen-associated molecular patterns (PAMPs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to activate innate immune response to clear the invading virus. However, dysregulated immune responses may elicit the overproduction of proinflammatory cytokines and chemokines, resulting in the enhancement of immune-mediated pathology. Therefore, a proper understanding of the interaction between SARS-CoV-2 and TLR-induced immune responses is very important for the development of effective preventive and therapeutic strategies. In this review, we discuss the recognition of SARS-CoV-2 components by TLRs and the downstream signaling pathways that are activated, as well as the dual role of TLRs in regulating antiviral effects and excessive inflammatory responses in patients with coronavirus disease 2019 (COVID-19). In addition, this article describes recent progress in the development of TLR immunomodulators including the agonists and antagonists, as vaccine adjuvants or agents used to treat hyperinflammatory responses during SARS-CoV-2 infection.

6.
Biosens Bioelectron ; 142: 111570, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401227

RESUMO

To develop a specific method for the detection of S. aureus, chicken anti-protein A IgY was adopted for specifically capturing S. aureus, depending on the specific recognition of staphylococcal protein A (SPA) by chicken anti-protein A IgY, which can eliminate the interference from protein G-producing Streptococcus. HRP labeled IgG, Fc region of which has a high affinity towards SPA, was paired with IgY for the colorimeter analysis of the system. By optimizing the system, a super-low detection limit of 11 CFU of S. aureus in 100 µL PBS without enrichment, with a linear range from 5.0 × 102 CFU mL-1 to 5.0 × 104 CFU mL-1 was obtained. The entire assay was accomplished in less than 90 min and no cross-reactivity with the other tested bacterial species was observed. Moreover, the developed assay has been applied for the detection of S. aureus in three different types of real samples (sodium chloride injection, apple juice and human urine) with satisfactory results. To the best of our knowledge, it is the first time to report using chicken anti-protein A IgY and any IgG to detect S. aureus based on the dual-recognition mode of SPA. The novel method opened up a way for monitoring S. aureus in food samples with high sensitivity, specificity and simple operation.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Imunoglobulinas/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Animais , Galinhas , Análise de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Humanos , Imunoglobulina G/química , Limite de Detecção , Infecções Estafilocócicas/urina
7.
RSC Adv ; 9(58): 33589-33595, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528901

RESUMO

In this study, a novel colorimetric sensing platform was developed for the detection of S. aureus using dog immunoglobulin G (IgG) as the capture antibody and chicken anti-protein A immunoglobulin Y labeled with horseradish peroxidase (HRP-IgY) as the detection antibody. Dog IgG labeled with magnetic beads was used to capture S. aureus through the interaction between the Fc region of dog IgG and Staphylococcal protein A (SPA). HRP-IgY was introduced to recognize the residual SPA on the surface of S. aureus and to create a sandwich format, after which a soluble 3,3',5,5'-tetramethylbenzidine (TMB) substrate was added. A stop solution was utilized to cease the enzymatic chromogenic reaction, and then optical density was read at 450 nm. Under optimal conditions, the proposed method displayed a low detection limit of 1.0 × 103 CFU mL-1 and a wide linear range of 3.1 × 103 to 2.0 × 105 CFU mL-1. This detection method exhibited high specificity against other foodborne bacteria. The recovery rates ranged from 95.2% to 129.2%. To our knowledge, this is the first report to employ dog IgG and chicken IgY as an antibody pair to detect S. aureus. This technique exhibits high application potential for S. aureus monitoring in various kinds of samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...