Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 29(7): 688-697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817871

RESUMO

The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
2.
Cell Cycle ; 20(22): 2402-2412, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606419

RESUMO

Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.


Assuntos
Apoptose , Colforsina , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Colforsina/farmacologia , Ciclina B1/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
3.
Oncol Lett ; 21(3): 236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33613725

RESUMO

Poor drug efficacy is a prominent cause of oral squamous cell carcinoma (OSCC) treatment failure. Although increased efforts in developing OSCC therapeutic strategies have been achieved in recent decades, the 5-year survival rate of patients with OSCC remains poor and effective drugs to treat OSCC are lacking. The aim of the present study was to investigate the apoptotic effect caused by lycorine hydrochloride (LH) and to identify its mechanism in the OSCC HSC-3 cell line. The findings demonstrated that LH effectively induced HSC-3 cell apoptosis and cell cycle arrest at the G0/G1 phase, resulting in the inhibition of cell proliferation. Furthermore, it was found that LH increased reactive oxygen species (ROS) production, triggered mitochondrial membrane potential (MMP) disorder, enhanced the protein expression levels of Bax, Bim, cleaved caspase-9, caspase-3 and poly(ADP-ribose) polymerase 1 and decreased Mcl-1 expression. The protein expression levels of important members of the JNK signaling pathway, including phosphorylated (p)-JNK, p-mitogen-activated protein kinase kinase 4 and p-c-Jun, were significantly increased in LH-treated cells, accompanied by an increase in ROS. However, N-acetyl cysteine (NAC), a potent antioxidant, reversed the upregulated mRNA expression of c-Jun, as well as the enhanced ROS production, the disorder of MMP and the apoptosis of HSC-3 cells induced by LH. These results suggested that LH may induce HSC-3 cell apoptosis via the ROS-mediated mitochondrial apoptotic pathway and the JNK signaling pathway, which indicated that LH may be a potential drug candidate for anti-OSCC therapy.

4.
PLoS One ; 8(7): e69096, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861958

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare heritable disease characterized by progressive heterotopic ossification of connective tissues, for which there is presently no definite treatment. A recurrent activating mutation (c.617G→A; R206H) of activin receptor-like kinase 2 (ACVR1/ALK2), a BMP type I receptor, has been shown as the main cause of FOP. This mutation constitutively activates the BMP signaling pathway and initiates the formation of heterotopic bone. In this study, we have designed antisense oligonucleotides (AONs) to knockdown mouse ALK2 expression by means of exon skipping. The ALK2 AON could induce exon skipping in cells, which was accompanied by decreased ALK2 mRNA levels and impaired BMP signaling. In addition, the ALK2 AON potentiated muscle differentiation and repressed BMP6-induced osteoblast differentiation. Our results therefore provide a potential therapeutic approach for the treatment of FOP disease by reducing the excessive ALK2 activity in FOP patients.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Éxons , Células Musculares/citologia , Mioblastos/citologia , Miosite Ossificante/terapia , Oligonucleotídeos Antissenso/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Humanos , Camundongos , Células Musculares/metabolismo , Mutação , Mioblastos/metabolismo , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Oligonucleotídeos Antissenso/síntese química , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Transdução de Sinais
5.
Cell Mol Life Sci ; 70(3): 407-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22752156

RESUMO

Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Ossificação Heterotópica/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Humanos , Distrofia Muscular de Duchenne/patologia , Ossificação Heterotópica/patologia , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 419(1): 83-8, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22326917

RESUMO

Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a ß-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/ß-catenin induced gene in myoblast cell fate determination.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Proteínas Inibidoras de Diferenciação/genética , Mioblastos/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Células NIH 3T3 , Transdução de Sinais , Proteínas Smad/metabolismo , Proteína Wnt3A/genética , beta Catenina/genética
7.
Neurobiol Dis ; 41(2): 353-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20940052

RESUMO

Duchenne Muscular Dystrophy (DMD) is an X-linked lethal muscle wasting disease characterized by muscle fiber degeneration and necrosis. The progressive pathology of DMD can be explained by an insufficient regenerative response resulting in fibrosis and adipose tissue formation. BMPs are known to inhibit myogenic differentiation and in a previous study we found an increased expression of a BMP family member BMP4 in DMD myoblasts. The aim of the current study was therefore to investigate whether inhibition of BMP signaling could be beneficial for myoblast differentiation and muscle regeneration processes in a DMD context. All tested BMP inhibitors, Noggin, dorsomorphin and LDN-193189, were able to accelerate and enhance myogenic differentiation. However, dorsomorphin repressed both BMP and TGFß signaling and was found to be toxic to primary myoblast cell cultures. In contrast, Noggin was found to be a potent and selective BMP inhibitor and was therefore tested in vivo in a DMD mouse model. Local adenoviral-mediated overexpression of Noggin in muscle resulted in an increased expression of the myogenic regulatory genes Myog and Myod1 and improved muscle histology. In conclusion, our results suggest that repression of BMP signaling may constitute an attractive adjunctive therapy for DMD patients.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Mioblastos/patologia , Fenótipo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Proteínas de Transporte/uso terapêutico , Diferenciação Celular/genética , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
8.
J Biol Chem ; 285(16): 12169-80, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20048150

RESUMO

Bone morphogenetic proteins (BMPs) are used clinically to induce new bone formation in spinal fusions and long bone non-union fractures. However, large amounts of BMPs are needed to achieve these effects. BMPs were found to increase the expression of antagonists, which potentially limit their therapeutic efficacy. However, the relative susceptibility of osteoinductive BMPs to different antagonists is not well characterized. Here we show that BMP-6 is more resistant to noggin inhibition and more potent in promoting osteoblast differentiation in vitro and inducing bone regeneration in vivo when compared with its closely related BMP-7 paralog. Noggin was found to play a critical role as a negative feedback regulator of BMP-7 but not BMP-6-induced biological responses. Using BMP-6/7 chimeras, we identified lysine 60 as a key residue conferring noggin resistance within the BMP-6 protein. A remarkable correlation was found between the presence of a lysine at this position and noggin resistance among a panel of osteoinductive BMPs. Introduction of a lysine residue at the corresponding positions of BMP-2 and BMP-7 allowed for molecular engineering of recombinant BMPs with increased resistance to noggin antagonism.


Assuntos
Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/fisiologia , Proteínas de Transporte/fisiologia , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/farmacologia , Regeneração Óssea/fisiologia , Células COS , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Retroalimentação Fisiológica , Expressão Gênica , Humanos , Lisina/química , Masculino , Células-Tronco Mesenquimais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...