Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Commun ; 15(1): 4242, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762562

RESUMO

P-type Fe3CoSb12-based skutterudite thin films are successfully fabricated, exhibiting high thermoelectric performance, stability, and flexibility at medium-to-high temperatures, based on preparing custom target materials and employing advanced pulsed laser deposition techniques to address the bonding challenge between the thin films and high-temperature flexible polyimide substrates. Through the optimization of fabrication processing and nominal doping concentration of Ce, the thin films show a power factor of >100 µW m-1 K-2 and a ZT close to 0.6 at 653 K. After >2000 bending cycle tests at a radius of 4 mm, only a 6 % change in resistivity can be observed. Additionally, the assembled p-type Fe3CoSb12-based flexible device exhibits a power density of 135.7 µW cm-2 under a temperature difference of 100 K with the hot side at 623 K. This work fills a gap in the realization of flexible thermoelectric devices in the medium-to-high-temperature range and holds significant practical application value.

2.
Nat Commun ; 15(1): 3426, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654020

RESUMO

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational "triple treatments" to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm-1 K-2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 µW cm-2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

3.
Adv Mater ; : e2313146, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608290

RESUMO

Thermoelectric technology, which enables a direct and pollution-free conversion of heat into electricity, provides a promising path to address the current global energy crisis. Among the broad range of thermoelectric materials, silver copper chalcogenides (AgCuQ, Q = S, Se, Te) have garnered significant attention in thermoelectric community in light of inherently ultralow lattice thermal conductivity, controllable electronic transport properties, excellent thermoelectric performance across various temperature ranges, and a degree of ductility. This review epitomizes the recent progress in AgCuQ-based thermoelectric materials, from the optimization of thermoelectric performance to the rational design of devices, encompassing the fundamental understanding of crystal structures, electronic band structures, mechanical properties, and quasi-liquid behaviors. The correlation between chemical composition, mechanical properties, and thermoelectric performance in this material system is also highlighted. Finally, several key issues and prospects are proposed for further optimizing AgCuQ-based thermoelectric materials.

4.
J Colloid Interface Sci ; 664: 136-145, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460379

RESUMO

Extracting functional materials from industrial waste residues to absorb organic dyes can maximize waste reuse and minimize water pollution. However, the extraordinarily low purification efficiency still limits the practical application of this strategy. Herein, the lamellar NiOOH is in-situ anchored on the industrial waste red mud surface (ARM/NiOOH) as an adsorbent to purify organic dyes in wastewater. ARM/NiOOH adsorbent with high specific surface area and porosity provides considerable active sites for the congo red (CR), thereby significantly enhancing the removal efficiency of CR. Besides, we fit a reasonable adsorption model for ARM/NiOOH adsorbent and investigate its adsorption kinetics. Resultantly, ARM/NiOOH adsorbent can remarkably adsorb 348.0 mg g-1 CR within 5 min, which is 7.91 times that of raw RM. Our work provides a strategy for reusing industrial waste and purifying sewage pollution, which advances wastewater treatment engineering.

5.
Chem Asian J ; 19(10): e202400130, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38380867

RESUMO

The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m-1 K-1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe-based materials.

6.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178655

RESUMO

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

7.
Nat Commun ; 15(1): 923, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296942

RESUMO

Exploring new near-room-temperature thermoelectric materials is significant for replacing current high-cost Bi2Te3. This study highlights the potential of Ag2Se for wearable thermoelectric electronics, addressing the trade-off between performance and flexibility. A record-high ZT of 1.27 at 363 K is achieved in Ag2Se-based thin films with 3.2 at.% Te doping on Se sites, realized by a new concept of doping-induced orientation engineering. We reveal that Te-doping enhances film uniformity and (00l)-orientation and in turn carrier mobility by reducing the (00l) formation energy, confirmed by solid computational and experimental evidence. The doping simultaneously widens the bandgap, resulting in improved Seebeck coefficients and high power factors, and introduces TeSe point defects to effectively reduce the lattice thermal conductivity. A protective organic-polymer-based composite layer enhances film flexibility, and a rationally designed flexible thermoelectric device achieves an output power density of 1.5 mW cm-2 for wearable power generation under a 20 K temperature difference.

8.
ACS Nano ; 18(2): 1678-1689, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164927

RESUMO

Incorporating donor doping into Mg3Sb1.5Bi0.5 to achieve n-type conductivity is one of the crucial strategies for performance enhancement. In pursuit of higher thermoelectric performance, we herein report co-doping with Te and Y to optimize the thermoelectric properties of Mg3Sb1.5Bi0.5, achieving a peak ZT exceeding 1.7 at 703 K in Y0.01Mg3.19Sb1.5Bi0.47Te0.03. Guided by first-principles calculations for compositional design, we find that Te-doping shifts the Fermi level into the conduction band, resulting in n-type semiconductor behavior, while Y-doping further shifts the Fermi level into the conduction band and reduces the bandgap, leading to enhanced thermoelectric performance with a power factor as high as >20 µW cm-1 K-2. Additionally, through detailed micro/nanostructure characterizations, we discover that Te and Y co-doping induces dense crystal and lattice defects, including local lattice distortions and strains caused by point defects, and densely distributed grain boundaries between nanocrystalline domains. These defects efficiently scatter phonons of various wavelengths, resulting in a low thermal conductivity of 0.83 W m-1 K-1 and ultimately achieving a high ZT. Furthermore, the dense lattice defects induced by co-doping can further strengthen the mechanical performance, which is crucial for its service in devices. This work provides guidance for the composition and structure design of thermoelectric materials.

9.
Adv Sci (Weinh) ; 11(3): e2305662, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37941489

RESUMO

Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Glicólise , Lactatos/uso terapêutico , Microambiente Tumoral
10.
J Colloid Interface Sci ; 651: 284-295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542903

RESUMO

Most traditional powder photocatalysts are not easily recovered. Herein, we report a flexible and recoverable photocatalyst with superior photocatalytic activity, in which MoS2/TiO2 heterojunctions are grown on amorphous carbon-coated carbon textiles (CT@C-MoS2/TiO2). Recoverable CT@C-MoS2/TiO2 textile was used to degrade 10 mg L-1 rhodamine B, leading to a degradation rate of up to 98.8 % within 30 min. Such a degradation rate is much higher than that of most of the reported studies. A density functional theory (DFT) calculation results illustrate charge transfer mechanism inside TiO2-C, MoS2-C, and MoS2/TiO2 heterojunctions, which shows that CT@C-MoS2/TiO2 textile with three electron separation channels has a high photogenerated carrier separation rate, which remarkably enhances the photocatalytic activity. Our work provides a novel strategy to design an efficient and recoverable photocatalyst with high activity.

11.
Redox Biol ; 64: 102787, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392517

RESUMO

INTRODUCTION: Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES: The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS: Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS: Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVß5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION: The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.


Assuntos
Armadilhas Extracelulares , Pancreatite , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Pancreatite/metabolismo , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Doença Aguda , Neutrófilos/metabolismo , Inflamação/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
12.
J Colloid Interface Sci ; 645: 694-704, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37167918

RESUMO

The strategy, called purifying wastewater with waste materials (PWWM), can simultaneously improve the secondary utilization of industrial waste materials and in turn, reduce environmental pollution. However, the PWWM strategy has still not been extensively used because of its low purification efficiency of organic pollutants and extremely difficult secondary utilization process. Herein, we use zinc aluminum silicate (ZAS) to modify waste granular red mud (GRM) to form a recoverable adsorbent, called ZAS/GRM adsorbent. The ZAS has been found to exhibit exceptional adsorption performance with the ability to firmly anchor onto the surface of GRM, in which heavy metal ions can effectively solidify and reduce their outflow. Furthermore, many voids have been tactfully designed in the ZAS/GRM adsorbents by using a water vapor project, which provide more active sites for congo red (CR) organic dye, thereby remarkably improving the removal efficiency of CR. From our purification of CR, we find that the CR adsorption capacity of the ZAS/GRM adsorbent is 3.509 mg g-1, which is four times higher than pure GRM (0.820 mg g-1). This study demonstrates our PWWM strategy is highly effective and can inspire more research on waste reuse.

13.
ACS Appl Mater Interfaces ; 15(21): 25650-25660, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196363

RESUMO

Due to their cost-effectiveness and industry-scale feasibility, carbon-based composites have been considered to be promising thermoelectric materials for low-grade power generation. However, current fabrications for carbon-based composites are time-consuming, and their thermoelectric properties are still low. Herein, we develop an ultrafast and cost-effective hot-pressing method to fabricate a novel carbon-based hybrid film, which consists of ionic liquid/phenolic resin/carbon fiber/expanded graphite. This method only costs no more than 15 min. We found that the expanded graphite as the major component enables high flexibility and the introduction of phenolic resin and carbon fiber enhances the shear resistance and toughness of the film, while the ion-induced carrier migration contributes to a high power factor of 38.7 µW m-1 K-2 at 500 K in the carbon-based hybrid film. After the comparison based on the ratios between the power factor with fabrication time and cost among the current conventional carbon-based thermoelectric composites, our hybrid films show the best cost-effective property. Besides, a flexible thermoelectric device, assembled by the as-designed hybrid films, shows a maximum output power density of 79.3 nW cm-2 at a temperature difference of 20 K. This work paves a new way to fabricate cost-effective and high-performance carbon-based thermoelectric hybrids with promising application potential.

14.
J Am Chem Soc ; 145(14): 7810-7819, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37002870

RESUMO

Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.


Assuntos
Doença de Alzheimer , Nanosferas , Humanos , Nanosferas/química , Peptídeos beta-Amiloides , Dióxido de Silício/química , Micelas , Géis , Amidas
15.
Artigo em Inglês | MEDLINE | ID: mdl-36746527

RESUMO

INTRODUCTION: The aim of our study is to explore the value of serum glycosylated hemoglobin A1c (HbA1c) in disease severity and clinical outcomes of acute pancreatitis (AP). RESEARCH DESIGN AND METHODS: Patients with AP were included from January 2013 to December 2020, retrospectively, dividing into normal serum HbA1c level (N-HbA1c) group and high serum HbA1c level (H-HbA1c) group according to the criteria HbA1c <6.5%. We compared patient characteristics, biochemical parameters, disease severity, and clinical outcomes of patients with AP in two groups. Besides, we evaluated the efficacy of serum HbA1c to predict organ failure (OF) in AP patients by receiver operating curve (ROC). RESULTS: We included 441 patients with AP, including 247 patients in N-HbA1c group and 194 patients in H-HbA1c group. Serum HbA1c level was positively correlated with Atlanta classification, systemic inflammatory response syndrome, local complication, and OF (all p<0.05). Ranson, BISAP (bedside index of severity in acute pancreatitis), and CT severity index scores in patients with H-HbA1c were markedly higher than those in patients with N-HbA1c (all p<0.01). ROC showed that the best critical point for predicting the development of OF in AP with serum HbA1c is 7.05% (area under the ROC curve=0.79). Logistic regression analysis showed H-HbA1c was the independent risk factor for the development of OF in AP. Interestingly, in patients with presence history of diabetes and HbA1c <6.5%, the severity of AP was significantly lower than that in H-HbA1c group. Besides, there was no significant difference between with and without history of diabetes in N-HbA1c group. CONCLUSIONS: Generally known, diabetes is closely related to the development of AP, and strict control of blood glucose can improve the related complications. Thus, the level of glycemic control before the onset of AP (HbA1c as an indicator) is the key to poor prognosis of AP, rather than basic history of diabetes. Elevated serum HbA1c level can become the potential indicator for predicting the disease severity of AP.


Assuntos
Diabetes Mellitus , Pancreatite , Humanos , Índice de Gravidade de Doença , Pancreatite/diagnóstico , Estudos Retrospectivos , Hemoglobinas Glicadas , Doença Aguda , Prognóstico , Gravidade do Paciente , Diabetes Mellitus/epidemiologia
16.
Adv Mater ; 35(2): e2208272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36366918

RESUMO

Driven by the intensive efforts in the development of high-performance GeTe thermoelectrics for mass-market application in power generation and refrigeration, GeTe-based materials display a high figure of merit of >2.0 and an energy conversion efficiency beyond 10%. However, a comprehensive review on GeTe, from fundamentals to devices, is still needed. In this regard, the latest progress on the state-of-the-art GeTe is timely reviewed. The phase transition, intrinsic high carrier concentration, and multiple band edges of GeTe are fundamentally analyzed from the perspectives of the native atomic orbital, chemical bonding, and lattice defects. Then, the fabrication methods are summarized with a focus on large-scale production. Afterward, the strategies for enhancing electronic transports of GeTe by energy filtering effect, resonance doping, band convergence, and Rashba band splitting, and the methods for strengthening phonon scatterings via nanoprecipitates, planar vacancies, and superlattices, are comprehensively reviewed. Besides, the device assembly and performance are highlighted. In the end, future research directions are concluded and proposed, which enlighten the development of broader thermoelectric materials.

17.
Front Genet ; 13: 982222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092874

RESUMO

Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.

18.
Postgrad Med ; 134(7): 703-710, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35801388

RESUMO

BACKGROUND: Acute pancreatitis (AP) is the most common pancreatic disease. Predicting the severity of AP is critical for making preventive decisions. However, the performance of existing scoring systems in predicting AP severity was not satisfactory. The purpose of this study was to develop predictive models for the severity of AP using machine learning (ML) algorithms and explore the important predictors that affected the prediction results. METHODS: The data of 441 patients in the Department of Gastroenterology in our hospital were analyzed retrospectively. The demographic data, blood routine and blood biochemical indexes, and the CTSI score were collected to develop five different ML predictive models to predict the severity of AP. The performance of the models was evaluated by the area under the receiver operating characteristic curve (AUC). The important predictors were determined by ranking the feature importance of the predictive factors. RESULTS: Compared to other ML models, the extreme gradient boosting model (XGBoost) showed better performance in predicting severe AP, with an AUC of 0.906, an accuracy of 0.902, a sensitivity of 0.700, a specificity of 0.961, and a F1 score of 0.764. Further analysis showed that the CTSI score, ALB, LDH, and NEUT were the important predictors of the severity of AP. CONCLUSION: The results showed that the XGBoost algorithm can accurately predict the severity of AP, which can provide an assistance for the clinicians to identify severe AP at an early stage.


Assuntos
Pancreatite , Doença Aguda , Humanos , Aprendizado de Máquina , Pancreatite/diagnóstico , Valor Preditivo dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença
19.
Br J Neurosurg ; 36(6): 693-698, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35393907

RESUMO

BACKGROUND: Mechanical obstruction is the most common cause of shunt failure for hydrocephalic patients. However, the diagnosis is extremely challenging and often requires invasive testing methods. Thus, a simple and non-invasive technique is in urgent need to predict the intracranial pressure (ICP) of hydrocephalic patients during their post-surgical follow-up, which could help neurosurgeons to determine the conditions of the shunt system. MATERIALS AND METHODS: Two groups of patients were enrolled in the current study. In group I, patients were enrolled as they were diagnosed with high ICP hydrocephalus and received shunt surgery. The shunt valve pressures were taken for their post-surgical ICP. Meanwhile, the participants of group II exhibited abnormally increased lumbar puncture opening pressure (LPOP; from 180 to 400 mmH2O). Both the ICP and LPOP were used to match with their corresponding tympanic membrane temperature (TMT). RESULTS: When patients' ICP were in the normal range (group I, from 50 to 180 mmH2O), the TMT correlated with ICP in a linear regression model (R2 = 0.59, p < 0.001). Interestingly, when patients exhibited above-normal ICP (LPOP was from 180 to 400 mmH2O), their TMT fit well with the ICP in a third-order polynomial regression (R2 = 0.88). When the ICP was 287.98 mmH2O, the TMT approached the vertex, which was 38.54 °C. Based on this TMT-ICP algorithm, we invented a non-invasive ICP monitor system. Interestingly, a tight linear correlation was detected between the ICP data drawn from the non-invasive device and Codman ICP monitoring system (R2 = 0.93, p < 0.01). CONCLUSIONS: We believe the TMT-ICP algorithm (the Y-Jiang model) could be used for preliminary prediction of shunt malfunction as well as monitoring ICP changes.


Assuntos
Hidrocefalia , Pressão Intracraniana , Humanos , Invenções , Hidrocefalia/diagnóstico , Hidrocefalia/cirurgia , Monitorização Fisiológica , Derivações do Líquido Cefalorraquidiano
20.
World Neurosurg ; 161: e688-e697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227922

RESUMO

OBJECTIVE: Hydrocephalus is a common but potentially life-threatening condition. However, valve malfunction makes further diagnosis difficult. Thus, we tried to develop a noninvasive method to detect the hydrocephalus intracranial pressure (ICP) during routine follow-up. METHODS: In group I, the patient was recruited because a spinal tap test was necessary for either disease diagnosis or treatment. In group II, patients were diagnosed with high ICP hydrocephalus and received shunt surgery. The tympanic membrane temperatures (TMTs) were recorded and plotted against the spinal tap pressure (STP) and shunt valve pressures. RESULTS: All patients in group I showed an above-normal STP (from 180 to 400 mm H2O). The STP presents with an inverted U-shaped curve when it is plotted against TMT (R2 = 0.9). When the STP was 286.1 mm H2O, the TMT approached its peak value, which was 38.61°C (101.5°F). However, when ICP was in the normal range (50-200 mm H2O), the TMT correlated with ICP in a linear regression model (R2 = 0.69; P < 0.001). In addition, the cerebral perfusion pressure (CPP) was calculated and plotted against TMT. The TMT-CPP was also shown as a parabola (R2 = 0.74). Based on the TMT-ICP algorithm, we invented a noninvasive ICP monitor system, which performs in a manner comparable to the Codman ICP Transducer (R2 = 0.9; P < 0.01). CONCLUSIONS: Both Y-Jiang TMT-ICP and TMT-CPP algorithms are useful to monitor the shunt outcomes and identify potential shunt failure. More importantly, these algorithms open the possibility for the rational acquisition of ICP and CPP noninvasively.


Assuntos
Hidrocefalia , Pressão Intracraniana , Circulação Cerebrovascular , Humanos , Hidrocefalia/cirurgia , Temperatura , Membrana Timpânica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...