Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38588130

RESUMO

Traumatic brain injury (TBI) patients frequently experience chronic pain that can enhance their suffering and significantly impair rehabilitative efforts. Clinical studies suggest that damage to the periaqueductal gray matter (PAG) following TBI, a principal center involved in endogenous pain control, may underlie the development of chronic pain. We hypothesized that TBI would diminish the usual pain control functions of the PAG, but that directly stimulating this center using a chemogenetic approach would restore descending pain modulation. We used a well-characterized lateral fluid percussion model (1.3 ± 0.1 atm) of TBI in male rats (n = 271) and measured hindpaw mechanical nociceptive withdrawal thresholds using von Frey filaments. To investigate the role of the PAG in pain both before and after TBI, we activated the neurons of the PAG using a Designer Receptor Exclusively Activated by Designer Drug (DREADD) viral construct. Immunohistochemical analysis of brain tissue was used to assess the location and confirm the appropriate expression of the viral constructs in the PAG. Activation of the PAG DREADD using clozapine N-oxide (CNO) caused hindpaw analgesia that could be blocked using opioid receptor antagonist, naloxone, in uninjured but not TBI rats. Due to the importance of descending serotonergic signaling in modulating nociception, we ablated spinal serotonin signaling using 5,7-DHT. This treatment strongly reduced CNO-mediated anti-nociceptive effects in TBI but not uninjured rats. To define the serotonergic receptor(s) required for the CNO-stimulated effects in TBI rats, we administered 5-HT7 (SB-269970) and 5-HT1A (WAY-100635) receptor antagonists but observed no effects. The selective 5-HT2A receptor antagonist ketanserin, however, blocked CNO's effects in the DREADD expressing TBI but not DREADD expressing sham TBI animals. Blockade of alpha-1 adrenergic receptors with prazosin also had no effect after TBI. Descending pain control originating in the PAG is mediated through opioid receptors in uninjured rats. TBI, however, fundamentally alters the descending nociceptive control circuitry such that serotonergic influences predominate, and those are mediated by the 5-HT2A receptor. These results provide further evidence that the PAG is a key target for anti-nociception after TBI.

2.
J Pain ; : 104422, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37951284

RESUMO

Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1ß and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1ß and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.

3.
Sci Rep ; 12(1): 16359, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175479

RESUMO

Traumatic brain injury (TBI) is a significant public health concern, with the majority of injuries being mild. Many TBI victims experience chronic pain. Unfortunately, the mechanisms underlying pain after TBI are poorly understood. Here we examined the contribution of spinal monoamine signaling to dysfunctional descending pain modulation after TBI. For these studies we used a well-characterized concussive model of mild TBI. Measurements included mechanical allodynia, the efficacy of diffuse noxious inhibitory control (DNIC) endogenous pain control pathways and lumber norepinephrine and serotonin levels. We observed that DNIC is strongly reduced in both male and female mice after mild TBI for at least 12 weeks. In naïve mice, DNIC was mediated through α2 adrenoceptors, but sensitivity to α2 adrenoceptor agonists was reduced after TBI, and reboxetine failed to restore DNIC in these mice. The intrathecal injection of ondansetron showed that loss of DNIC was not due to excess serotonergic signaling through 5-HT3 receptors. On the other hand, the serotonin-norepinephrine reuptake inhibitor, duloxetine and the serotonin selective reuptake inhibitor escitalopram both effectively restored DNIC after TBI in both male and female mice. Therefore, enhancing serotonergic signaling as opposed to noradrenergic signaling alone may be an effective pain treatment strategy after TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Dor Crônica , Aminas , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cloridrato de Duloxetina/farmacologia , Feminino , Masculino , Camundongos , Norepinefrina , Ondansetron , Reboxetina , Receptores Adrenérgicos , Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
4.
J Pain ; 23(3): 472-486, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34699985

RESUMO

Chronic pain frequently develops after limb injuries, and its pathogenesis is poorly understood. We explored the hypothesis that the autonomic nervous system regulates adaptive immune system activation and nociceptive sensitization in a mouse model of chronic post-traumatic pain with features of complex regional pain syndrome (CRPS). In studies sympathetic signaling was reduced using 6-hydroxydopamine (6-OHDA) or lofexidine, while parasympathetic signaling was augmented by nicotine administration. Hindpaw allodynia, unweighting, skin temperature, and edema were measured at 3 and 7 weeks after fracture. Hypertrophy of regional lymph nodes and IgM deposition in the skin of injured limbs were followed as indices of adaptive immune system activation. Passive transfer of serum from fracture mice to recipient B cell deficient (muMT) mice was used to assess the formation of pain-related autoantibodies. We observed that 6-OHDA or lofexidine reduced fracture-induced hindpaw nociceptive sensitization and unweighting. Nicotine had similar effects. These treatments also prevented IgM deposition, hypertrophy of popliteal lymph nodes, and the development of pronociceptive serum transfer effects. We conclude that inhibiting sympathetic or augmenting parasympathetic signaling inhibits pro-nociceptive immunological changes accompanying limb fracture. These translational results support the use of similar approaches in trials potentially alleviating persistent post-traumatic pain and, possibly, CRPS. PERSPECTIVE: Selective treatments aimed at autonomic nervous system modulation reduce fracture-related nociceptive and functional sequelae. The same treatment strategies limit pain-supporting immune system activation and the production of pro-nociceptive antibodies. Thus, the therapeutic regulation of autonomic activity after limb injury may reduce the incidence of chronic pain.


Assuntos
Dor Crônica , Síndromes da Dor Regional Complexa , Fraturas Ósseas , Animais , Sistema Nervoso Autônomo , Dor Crônica/complicações , Modelos Animais de Doenças , Fraturas Ósseas/complicações , Hipertrofia/complicações , Imunoglobulina M/uso terapêutico , Camundongos , Nicotina , Nociceptividade/fisiologia , Oxidopamina/uso terapêutico , Oxidopamina/toxicidade
5.
Brain Behav Immun ; 94: 148-158, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636311

RESUMO

BACKGROUND: Up-regulated interleukin 6 (IL-6) signaling, immune system activation, and pronociceptive autoantibodies are characteristic of complex regional pain syndrome (CRPS). IL-6 is known to promote B cell differentiation, thus we hypothesized that IL-6 signaling plays a crucial role in the development of adaptive immune responses and nociceptive sensitization in a murine tibia fracture model of CRPS. METHODS: Mice deficient in IL-6 expression (IL-6-/-) or B cell deficient (muMT) underwent tibia fracture and 3 weeks of cast immobilization or sham injury. The deposition of IgM in fractured limbs was followed using Western blotting, and passive serum transfer to muMT fracture mice was used to detect nociception-supporting autoantibodies. Lymph nodes were assessed for hypertrophy, IL-6 expression was measured using qPCR and ELISA, and germinal center formation was evaluated using FACS and immunohistochemistry. The therapeutic effects of exogenous neutralizing anti-IL-6 antibodies were also evaluated in the CRPS fracture model. RESULTS: Functional IL-6 signaling was required for the post fracture development of nociceptive sensitization, vascular changes, and IgM immune complex deposition in the skin of injured limbs. Passive transfer of sera from wild-type, but not IL-6-/- fracture mice into muMT fracture mice caused enhanced allodynia and postural unweighting. IL-6-/- fracture mice displayed reduced popliteal lymphadenopathy after fracture. Germinal center responses were detected in the popliteal lymph nodes of wild-type, but not in IL-6-/- fracture mice. We observed that IL-6 expression was dramatically enhanced in popliteal lymph node tissue after fracture. Conversely, administration of anti-IL-6 antibodies reduced nociceptive and vascular changes after fracture and inhibited lymphadenopathy. CONCLUSIONS: Collectively, these data support the hypothesis that IL-6 signaling in the fracture limb of mice is required for germinal center formation, IgM autoantibody production and nociceptive sensitization. Anti-IL-6 therapies might, therefore, reduce pain after limb fracture or in the setting of CRPS.


Assuntos
Síndromes da Dor Regional Complexa , Nociceptividade , Animais , Modelos Animais de Doenças , Centro Germinativo , Imunoglobulina M , Masculino , Camundongos , Tíbia
6.
Brain Behav Immun ; 88: 725-734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413559

RESUMO

Emerging evidence suggests that Complex Regional Pain Syndrome (CRPS) is in part a post-traumatic autoimmune disease mediated by an adaptive immune response after limb injuries. We previously observed in a murine tibial fracture model of CRPS that pain-related behaviors were dependent upon adaptive immune mechanisms including the neuropeptide-dependent production of IgM for 5 months after injury. However, the time course of induction of this immune response and the demonstration of germinal center formation in lymphoid organs has not been evaluated. Using the murine fracture model, we employed behavioral tests of nociceptive sensitization and limb dysfunction, serum passive transfer techniques, western blot analysis of IgM accumulation, fluorescence-activated cell sorting (FACS) of lymphoid tissues and immunohistochemistry to follow the temporal activation of the adaptive immune response over the first 3 weeks after fracture. We observed that: 1) IgM protein levels in the skin of the fractured mice were elevated at 3 weeks post fracture, but not at earlier time points, 2) serum from fracture mice at 3 weeks, but not 1 and 2 weeks post fracture, had pro-nociceptive effects when passively transferred to fractured muMT mice lacking B cells, 3) fracture induced popliteal lymphadenopathy occurred ipsilateral to fracture beginning at 1 week and peaking at 3 weeks post fracture, 4) a germinal center reaction was detected by FACS analysis in the popliteal lymph nodes from injured limbs by 3 weeks post fracture but not in other lymphoid tissues, 5) germinal center formation was characterized by the induction of T follicular helper cells (Tfh) and germinal center B cells in the popliteal lymph nodes of the injured but not contralateral limbs, and 6) fracture mice treated with the Tfh signaling inhibitor FK506 had impaired germinal center reactions, reduced IgM levels, reduced nociceptive sensitization, and no pronociceptive serum effects after administration to fractured muMT mice. Collectively these data demonstrate that tibia fracture induces an adaptive autoimmune response characterized by popliteal lymph node germinal center formation and Tfh cell dependent B cell activation, resulting in nociceptive sensitization within 3 weeks.


Assuntos
Centro Germinativo , Fraturas da Tíbia , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Membro Posterior , Imunoglobulinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Linfócitos T Auxiliares-Indutores , Tíbia
7.
Anesth Analg ; 130(1): 248-257, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166231

RESUMO

BACKGROUND: Persistent use of prescription opioids beyond the period of surgical recovery is a large part of a public health problem linked to the current opioid crisis in the United States. However, few studies have been conducted to examine whether morphine reward is influenced by acute pain and injury. METHODS: In a mouse model of incisional injury and minor trauma, animals underwent conditioning, extinction, and drug-primed reinstatement with morphine to examine the rewarding properties of morphine in the presence of acute incisional injury and drug-induced relapse, respectively. In addition, we sought to determine whether these behaviors were influenced by kappa opioid receptor signaling and measured expression of prodynorphin messenger RNA in the nucleus accumbens and medial prefrontal cortex after conditioning and before reinstatement with morphine and incisional injury. RESULTS: In the presence of incisional injury, we observed enhancement of morphine reward with morphine-conditioned place preference but attenuated morphine-primed reinstatement to reward. This adaptation was not present in animals conditioned 12 days after incisional injury when nociceptive sensitization had resolved; however, they showed enhancement of morphine-primed reinstatement. Prodynorphin expression was greatly enhanced in the nucleus accumbens and medial prefrontal cortex of mice with incisional injury and morphine conditioning and remained elevated up to drug-primed reinstatement. These changes were not observed in mice conditioned 12 days after incisional injury. Further, kappa opioid receptor blockade with norbinaltorphimine before reinstatement reversed the attenuation induced by injury. CONCLUSIONS: These findings suggest enhancement of morphine reward as a result of incisional injury but paradoxically a protective adaptation with incisional injury from drug-induced relapse resulting from kappa opioid receptor activation in the reward circuitry. Remote injury conferred no such protection and appeared to enhance reinstatement.


Assuntos
Dor Aguda/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/agonistas , Recompensa , Ferimentos Penetrantes/tratamento farmacológico , Dor Aguda/metabolismo , Dor Aguda/fisiopatologia , Dor Aguda/psicologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Encefalinas/genética , Encefalinas/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Limiar da Dor/efeitos dos fármacos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/fisiopatologia , Ferimentos Penetrantes/psicologia
8.
Anesthesiology ; 130(2): 292-308, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418215

RESUMO

BACKGROUND: Emerging evidence suggests that opioid use immediately after surgery and trauma may worsen outcomes. In these studies, the authors aimed to determine whether morphine administered for a clinically relevant time period (7 days) in a tibia fracture orthopedic surgery model had adverse effects on postoperative recovery. METHODS: Mice were given morphine twice daily for 7 days after unilateral tibial fracture and intramedullary pin fixation to model orthopedic surgery and limb trauma. Mechanical allodynia, limb-specific weight bearing, gait changes, memory, and anxiety were measured after injury. In addition, spinal cord gene expression changes as well as glial activation were measured. Finally, the authors assessed the effects of a selective Toll-like receptor 4 antagonist, TAK-242, on nociceptive and functional changes after injury. RESULTS: Tibial fracture caused several weeks of mechanical nociceptive sensitization (F(1, 216) = 573.38, P < 0.001, fracture + vehicle vs. sham + vehicle, n = 10 per group), and this change was exacerbated by the perioperative administration of morphine (F(1, 216) = 71.61, P < 0.001, fracture + morphine vs. fracture + vehicle, n = 10 per group). In additional testing, injured limb weight bearing, gait, and object location memory were worse in morphine-treated fracture mice than in untreated fracture mice. Postfracture expression levels of several genes previously associated with opioid-induced hyperalgesia, including brain-derived neurotrophic factor and prodynorphin, were unchanged, but neuroinflammation involving Toll-like receptor 4 receptor-expressing microglia was observed (6.8 ± 1.5 [mean ± SD] cells per high-power field for fracture + vehicle vs. 12 ± 2.8 fracture + morphine, P < 0.001, n = 8 per /group). Treatment with a Toll-like receptor 4 antagonist TAK242 improved nociceptive sensitization for about 2 weeks in morphine-treated fracture mice (F(1, 198) = 73.36, P < 0.001, fracture + morphine + TAK242 vs. fracture + morphine, n = 10 per group). CONCLUSIONS: Morphine treatment beginning at the time of injury impairs nociceptive recovery and other outcomes. Measures preventing glial activation through Toll-like receptor 4 signaling may reduce the adverse consequences of postoperative opioid administration.


Assuntos
Hiperalgesia/induzido quimicamente , Microglia/efeitos dos fármacos , Morfina/farmacologia , Nociceptores/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fraturas da Tíbia/fisiopatologia , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/fisiopatologia , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Recuperação de Função Fisiológica/fisiologia
9.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27094549

RESUMO

BACKGROUND: Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. RESULTS: Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. CONCLUSIONS: Spinal epigenetic changes involving Bdnf and Pdyn may contribute to the enhanced postoperative nociceptive sensitization and analgesic tolerance observed after continuous opioid exposure. Treatments blocking the epigenetically mediated up-regulation of these genes or administration of TrkB or κ-opioid receptor antagonists may improve the clinical utility of opioids, particularly after surgery.


Assuntos
Analgésicos Opioides/uso terapêutico , Analgésicos/uso terapêutico , Tolerância a Medicamentos , Epigênese Genética/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/genética , Medula Espinal/metabolismo , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dinorfinas/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Hiperalgesia/complicações , Hiperalgesia/genética , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Morfina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/cirurgia
10.
Mol Pain ; 10: 59, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25217253

RESUMO

BACKGROUND: The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supporting the epigenetic effects responsible for OIH prolongation. RESULTS: Mice were treated with morphine according to an ascending dose protocol. Some mice also received the selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) additionally. Chronic morphine treatment with simultaneous HDAC inhibition enhanced OIH, and several spinal cord genes were up-regulated. The expression of Bdnf (Brain-derived neurotrophic factor) and Pdyn (Prodynorphin) were most closely related to the observed behavioral changes. ChIP (Chromatin immuoprecipation) assays demonstrated that promoter regions of Pdyn and Bdnf were strongly associated with aceH3K9 (Acetylated histone H3 Lysine9) after morphine and SAHA treatment. Furthermore, morphine treatment caused an increase in spinal BDNF and dynorphin levels, and these levels were further increased in SAHA treated mice. The selective TrkB (tropomyosin-receptor-kinase) antagonist ANA-12 reduced OIH when given one or seven days after cessation of morphine. Treatment with the selective kappa opioid receptor antagonist nor-BNI also reduced established OIH. The co-administration of either receptor antagonist agent daily with morphine resulted in attenuation of hyperalgesia present one day after cessation of treatment. Additionally, repeated morphine exposure induced a rise in BDNF expression that was associated with an increased number of BDNF+ cells in the spinal cord dorsal horn, showing strong co-localization with aceH3K9 in neuronal cells. Lastly, spinal application of low dose BDNF or Dynorphin A after resolution of OIH produced mechanical hypersensitivity, with no effect in controls. CONCLUSIONS: The present study identified two genes whose expression is regulated by epigenetic mechanisms during morphine exposure. Treatments aimed at preventing the acetylation of histones or blocking BDNF and dynorphin signaling may reduce OIH and improve long-term pain using opioids.


Assuntos
Analgésicos Opioides/toxicidade , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Morfina/toxicidade , Medula Espinal/metabolismo , Animais , Antineoplásicos/administração & dosagem , Azepinas/administração & dosagem , Benzamidas/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Dinorfinas/administração & dosagem , Dinorfinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/administração & dosagem , Medição da Dor/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vorinostat
11.
Anesth Analg ; 118(6): 1336-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24755847

RESUMO

BACKGROUND: Acute pain after surgery remains moderate to severe for 20% to 30% of patients despite advancements in the use of opioids, adjuvant drugs, and regional anesthesia. Depending on the type of surgery, 10% to 50% of patients experience persistent pain postoperatively, and there are no established methods for its prevention. Curcumin (diferuloylmethane) is one of the phenolic constituents of turmeric that has been used in Eastern traditional medicine as an antiseptic, antioxidant, anti-inflammatory, and analgesic agent. It may be effective for treating postoperative pain. METHODS: We used the hindpaw incision model with C57BL/6 mice. Sensitization to mechanical and thermal stimuli as well as effects on edema and temperature were measured up to 7 days after surgery. Spontaneous pain after incision was assessed by using conditioned place preference (CPP), and alterations in gait function were assessed using multiparameter digital gait analysis. RESULTS: Curcumin (50 mg/kg) significantly reduced the intensity of mechanical and heat sensitization after hindpaw incision in mice. No effects of curcumin on baseline nociceptive thresholds were observed. Curcumin also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. In addition, perioperative curcumin treatment attenuated hyperalgesic priming due to incision when mice were subsequently challenged with hindpaw prostaglandin E2 application. Furthermore, while vehicle-treated mice had evidence of spontaneous pain 48 hours after incision in the CPP paradigm, no evidence of ongoing pain was observed in the mice treated with curcumin. Likewise, hindpaw incision caused changes in several gait-related indices, but most of these were normalized in the curcumin-treated animals. The peri-incisional levels of several pronociceptive immune mediators including interleukin (IL)-1ß, IL-6, tumor necrosis factor α, and macrophage inflammatory protein-1α were either not reduced or were even augmented 1 and 3 days after incision in curcumin-treated mice. The anti-inflammatory cytokine IL-10 was unchanged, while transforming growth factor-ß levels were enhanced under the same conditions. CONCLUSIONS: Our studies suggest that curcumin treatment is effective in alleviating incision-induced inflammation, nociceptive sensitization, spontaneous pain, and functional gait abnormalities. Augmented transforming growth factor-ß production provides one possible mechanism. These preclinical findings demonstrate curcumin's potential as a preventative strategy in postoperative pain treatment.


Assuntos
Dor Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Temperatura Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Citocinas/biossíntese , Edema/patologia , Edema/prevenção & controle , Traumatismos do Pé/complicações , Traumatismos do Pé/tratamento farmacológico , Marcha/efeitos dos fármacos , Membro Posterior/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Resultado do Tratamento
12.
Anesthesiology ; 119(5): 1198-208, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23756451

RESUMO

BACKGROUND: The regulation of gene expression in nociceptive pathways contributes to the induction and maintenance of pain sensitization. Histone acetylation is a key epigenetic mechanism controlling chromatin structure and gene expression. Chemokine CC motif receptor 2 (CXCR2) is a proinflammatory receptor implicated in neuropathic and inflammatory pain and is known to be regulated by histone acetylation in some settings. The authors sought to investigate the role of histone acetylation on spinal CXCR2 signaling after incision. METHODS: Groups of 5-8 mice underwent hind paw incision. Suberoylanilide hydroxamic acid and anacardic acid were used to inhibit histone deacetylase and histone acetyltransferase, respectively. Behavioral measures of thermal and mechanical sensitization as well as hyperalgesic priming were used. Both message RNA quantification and chromatin immunoprecipitation analysis were used to study the regulation of CXCR2 and ligand expression. Finally, the selective CXCR2 antagonist SB225002 was administered intrathecally to reveal the function of spinal CXCR2 receptors after hind paw incision. RESULTS: Suberoylanilide hydroxamic acid significantly exacerbated mechanical sensitization after incision. Conversely, anacardic acid reduced incisional sensitization and also attenuated incision-induced hyperalgesic priming. Overall, acetylated histone H3 at lysine 9 was increased in spinal cord tissues after incision, and enhanced association of acetylated histone H3 at lysine 9 with the promoter regions of CXCR2 and keratinocyte-derived chemokine (CXCL1) was observed as well. Blocking CXCR2 reversed mechanical hypersensitivity after hind paw incision. CONCLUSIONS: Histone modification is an important epigenetic mechanism regulating incision-induced nociceptive sensitization. The spinal CXCR2 signaling pathway is one epigenetically regulated pathway controlling early and latent sensitization after incision.


Assuntos
Epigênese Genética/fisiologia , Hiperalgesia/genética , Período Intraoperatório , Nociceptividade/fisiologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Medula Espinal/fisiopatologia , Ácidos Anacárdicos/administração & dosagem , Ácidos Anacárdicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Imunoprecipitação da Cromatina , Dinoprostona/administração & dosagem , Dinoprostona/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hiperalgesia/etiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Estimulação Física , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vorinostat
13.
Anesthesiology ; 117(3): 626-38, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22846677

RESUMO

BACKGROUND: After incision keratinocytes in the epidermis become activated to produce a range of pain-related mediators. microRNA 203 (miR-203) is known to be involved in keratinocyte growth, differentiation, and skin inflammation. We hypothesized that one or more of these mediators might be under the control of miR-203. METHODS: The expression of miR-203 and its target gene, phospholipase A2 activating protein (PLAA), were examined after hind paw incision in mice. We investigated the local effect of intraplantar PLAA peptide injection in normal mice and the effects of a selective secretory phospholipase A2 inhibitor (HK064) on PLAA or incision-induced mechanical allodynia. Last, we investigated the role of substance P signaling in regulating miR-203 and PLAA expression in vitro and in vivo. RESULTS: Levels of miR-203 were strongly down-regulated in keratinocytes after incision. Informatics-based approaches identified PLAA as a likely candidate for regulation by miR-203. PLAA caused mechanical allodynia and conditioned place aversion but not thermal sensitization. HK064 reduced mechanical allodynia after incision and after intraplantar injection of PLAA. Using preprotachykinin gene knockout mice or with neurokinin-1 selective antagonist LY303870 treatment, we observed that substance P-mediated signaling was also required for miR-203 and PLAA regulation after incision. Finally, using the rat epidermal keratinocyte cell line, we observed that a miR-203 mimic molecule could block the substance P-induced increase in PLAA expression observed under control conditions. CONCLUSIONS: miR-203 may regulate expression of the novel nociceptive mediator PLAA after incision. Furthermore, the regulation of miR-203 and PLAA levels is reliant upon intact substance P signaling.


Assuntos
MicroRNAs/fisiologia , Dor/fisiopatologia , Proteínas/fisiologia , Animais , Condicionamento Psicológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/fisiologia , Receptores da Neurocinina-1/fisiologia , Transdução de Sinais/fisiologia , Substância P/fisiologia , Taquicininas/fisiologia
14.
J Pharmacol Exp Ther ; 303(2): 563-73, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12388637

RESUMO

In vascular smooth muscle, increased expression of cyclooxygenase-2 (COX-2) has emerged as an important mechanism for regulation of prostanoid synthesis influenced by vessel injury, cytokines, and growth factors. We have investigated how COX-2 participates in angiotensin II (ANG II)-mediated cell responses in cultured human vascular smooth muscle cells (VSMCs). ANG II type 1 (AT1) receptors induce increased accumulation of COX-2, both at the mRNA and protein levels. ANG II increased transcription of the COX-2 gene; also, nuclear extracts from stimulated cells had increased NF-kappa B binding to its DNA consensus sequence. ANG II-induced COX-2 expression was markedly blunted by inhibition of mitogen-activated protein kinase. Furthermore, the ANG II-induced increase in COX-2 protein abundance was attenuated by both the peroxisome proliferator-activated receptor alpha (PPARalpha) activator Wy-14,643 [pyrinixic acid; 4-chloro-6-(2,3-xylidino)-2-pyrimidinyl) thioacetic acid] and the PPARgamma activator 15d-PGJ2 (15-deoxy-Delta(12-14)-prostaglandin J2). Not only did ANG II increase COX-2 expression and prostaglandin synthesis, ANG II-stimulated DNA synthesis and cell migration were dependent on COX-2 activity. PPARalpha and PPARgamma activators inhibited ANG II-stimulated DNA synthesis and cell migration. These results suggest that ANG II enhances COX-2 expression at the transcription level; also, COX-2 activity plays an important role in mediating ANG II- induced proliferation and migration of VSMCs, suggesting the possibility of magnification of ANG II effects over time due to the induction of COX-2 expression. These results also demonstrate that both the alpha and gamma type of PPAR activators inhibit COX-2 expression induced by angiotensin II in VSMCs which may have therapeutic significance in vascular diseases.


Assuntos
Angiotensina II/farmacologia , Isoenzimas/biossíntese , Músculo Liso Vascular/enzimologia , Prostaglandina-Endoperóxido Sintases/biossíntese , Angiotensina II/antagonistas & inibidores , Northern Blotting , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2 , DNA/biossíntese , Eletroforese , Ensaio de Imunoadsorção Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Proteínas de Membrana , Mitose/efeitos dos fármacos , Músculo Liso Vascular/química , Músculo Liso Vascular/efeitos dos fármacos , Testes de Precipitina , Prostaglandinas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/agonistas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estimulação Química , Fatores de Transcrição/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...