Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0125023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112479

RESUMO

Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.


Assuntos
Ácidos Carboxílicos , Microalgas , Fermentação , Ácidos Carboxílicos/metabolismo , Microalgas/metabolismo , Anaerobiose , Etanol/metabolismo , Concentração de Íons de Hidrogênio
2.
Water Res ; 250: 120999, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118258

RESUMO

Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal , Carbono , Radicais Livres
3.
Chemosphere ; 338: 139515, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474034

RESUMO

Energy conversion of waste activated sludge alkaline fermentation liquor (WASAFL) to medium-chain fatty acids (MCFAs) is promising for sludge treatment and carbon recovery. However, the single electron donor (ED) fermentation for MCFAs production has irreparable defects. To resolve the respective shortcomings of single electron donor (ED) and improve the MCFAs production efficiency from WASAFL, a novel biotechnical process utilizing ethanol and lactate as co-EDs within different combination ratios were investigated. The results verified that MCFAs production was highest with ethanol to lactate ratio of 1:3 (6988.54 ± 208.18 mg COD/L), being 1.46 and 1.87 times of that with ethanol and lactate as single ED. The kinetic analysis results confirmed that ethanol to lactate ratio of 1:3 resulted in the highest MCFAs yield and formation rate. The microbial taxa results uncovered that the relative abundance of Sphaerochaeta and Haloimpatiens showed positive correlation with MCFAs production. The metabolic pathway analysis indicated that the ethanol oxidization, lactate oxidization, acrylate pathway, reverse ß oxidization and fatty acid biosynthesis pathway might take place in the WASAFL fermentation system, contributing to the WASAFL-to-MCFAs conversion.


Assuntos
Elétrons , Esgotos , Cinética , Ácidos Graxos/metabolismo , Fermentação , Etanol , Ácido Láctico , Redes e Vias Metabólicas , Ácidos Graxos Voláteis
4.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772699

RESUMO

Considered as a sensitive indicator of climate change, lake ice phenology can have significant influences on regional climate by affecting lake-atmosphere energy and water exchange. However, in situ measurements of ice phenology events are quite limited over high-elevation lakes on the Tibetan Plateau, where satellite monitoring can make up such deficiency. In this study, by a combination of AMSR-E (2002-2011) and AMSR-2 (2012-2021) passive microwave data, MODIS optimal products and in situ measurements of temperature profiles in four lakes, the ice phenology events of 40 high-elevation large lakes were derived and their inter-annual trends and influencing factors were analyzed. The freeze-up start date (FUS) mainly occurs in November-December with an average date of 9 December and the break-up end date (BUE) is concentrated in April-May with a multi-year average of 5 May. Under climate warming, 24 of the 34 (70.6%) lakes show delayed FUS at an average trend of 0.35 days/year, and 7 (20.6%) lakes show advanced BUE (rate of change CR = -0.17 days/year). The average ice coverage duration (ID) was 147 days, and 13 (38.2%) lakes shortened ID at an average rate of -0.33 days/year. By synthesizing other ice phenology products, we obtained the assembled products of lake ice phenology, and found that air temperature dominates during the freeze-thaw process, with a higher dependence of BUE than that of FUS on air temperature.

5.
Water Res X ; 19: 100169, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36798904

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous and intractable in urban waters. Compared with MPs, the smaller NPs have shown distinct physicochemical features, such as Brownian motion, higher specific surface area, and stronger interaction with other pollutants. Therefore, the qualitative and quantitative analysis of NPs is more challenging than that of MPs. Moreover, these characteristics endow NPs with significantly different environmental fate, interactions with pollutants, and eco-impacts from those of MPs in urban waters. Herein, we critically analyze the current advances in the difference between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are comparably discussed., The characterizations and fate studies of NPs are more challenging compared to MPs. Furthermore, NPs in most cases exhibit stronger interactions with other pollutants and more adverse eco-impacts on living things than MPs. Subsequently, perspective in this field is proposed to stimulate further size-dependent studies on MPs and NPs. This review would benefit the understanding of the role of NPs in the urban water ecosystem and guide future studies on plastic pollution management.

6.
Nanomicro Lett ; 15(1): 4, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454315

RESUMO

The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.

7.
Water Res ; 224: 119060, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096030

RESUMO

The global spread of antibiotic resistance genes (ARGs) has wreaked havoc with the treatment efficiency of antibiotics and, ultimately, anti-microbial chemotherapy, and has been conventionally attributed to the abuse and misuse of antibiotics. However, the ancient ARGs have alterative functions in bacterial physiology and thus they could be co-regulated by non-antibiotic conditions. Recent research has demonstrated that many non-antibiotic chemicals such as microplastics, metallic nanoparticles and non-antibiotic drugs, as well as some non-antibiotic conditions, can accelerate the dissemination of ARGs. These results suggested that the role of antibiotics might have been previously overestimated whereas the effects of non-antibiotic conditions were possibly ignored. Thus, in an attempt to fully understand the fate and behavior of ARGs in the eco-system, it is urgent to critically highlight the role and mechanisms of non-antibiotic chemicals and related environmental factors in the spread of ARGs. To this end, this timely review assessed the evolution of ARGs, especially its function alteration, summarized the non-antibiotic chemicals promoting the spread of ARGs, evaluated the non-antibiotic conditions related to ARG dissemination and analyzed the molecular mechanisms related to spread of ARGs induced by the non-antibiotic factors. Finally, this review then provided several critical perspectives for future research.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Microplásticos , Plásticos
8.
Water Res ; 222: 118895, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908482

RESUMO

Previous studies mostly focused on the responses of anaerobic granular sludge (AGS) to one kind of microplastics during wastewater treatment. However, a wide variety of microplastics has been detected in wastewater. The multiple microplastics induced stress on AGS and the effectively mitigating strategy still remain unavailable. Herein, this work comprehensively excavated the influences of multiple microplastics (i.e., polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE) and polypropylene (PP)) coexisting in the wastewater on AGS system from macroscopic to microcosmic aspects. Experimental results illustrated that microplastics decreased AGS granule size, increased cell inactivation and caused deteriorative methane recovery from wastewater. As such, this study then put great emphasis on proposing a mitigating strategy using hydrochar and disclosing the role of hydrochar in overcoming the stress induced by coexisting microplastics to AGS system. Physiological characterization and microbial community analysis demonstrated that hydrochar effectively mitigated the reductions in methane production by 50.6% and cell viability by 68.8% of microplastics-bearing AGS and reduced the toxicity of microplastics to microbial community in the AGS. Mechanisms investigation by fluorescence tagging and excitation emission matrix fluorescence spectroscopy with fluorescence regional integration (EEM-FRI) analysis revealed that hydrochar adsorbed/accumulated microplastics and enhanced microplastics-bearing AGS to secrete extracellular polymeric substance (EPS) with more humic acid generation, thus reducing the direct contact between microplastics and AGS. In addition, hydrochar weakened the AGS intracellular oxidative stress induced by microplastics, thereby completely eliminating the inhibition of microplastics on acidification efficiency of AGS, and partially mitigating the suppression on methanation.


Assuntos
Microplásticos , Esgotos , Anaerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Metano , Plásticos , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
Sci Total Environ ; 846: 157498, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870588

RESUMO

The photoaging mechanisms of various polymers have been explored based on the basic autoxidation scheme (BAS) before 10 years ago, however current research verified some defects in the BAS in both thermodynamic and dynamics. These defects are troublesome because they are associated with the hydrogen abstraction which is central to continuously perform the photooxidation process of microplastics. These found indicated that we might wrongly inferred photo-oxidation process of some microplastics. In addition, the important role of reactive oxygen species (ROS) in the type-dependent photoaging process of various microplastics has been revealed recently. In this case, fully and accurately understanding the photoaging mechanisms of different microplastics in environment is a priority to further manage the ecological risk of microplastics. Herein, this review aims to revise and update the degradation process of microplastics based on the revised BAS and in the perspective of ROS. Specifically, the modification of BAS is firstly discussed. The photoaging mechanisms of representative microplastics (i.e., polyethylene, polystyrene and polyethylene terephthalate) are then updated based on the corrected BAS. Additionally, the role of ROS in their photolysis process and the possibility of microplastics as photosensitizers/mediators to regulate the fate of co-existent pollutants are also analyzed. Finally, several perspectives are then proposed to guide future research on the photoaging behaviors of microplastics. This review would pave the way for the understanding of microplastic photoaging and the management of plastic pollution in environments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Ambientais/análise , Microplásticos , Fotólise , Plásticos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 828: 154404, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271918

RESUMO

Primary sludge (PS) and Waste activated sludge (WAS) as two main sludge streams in wastewater treatment plants are commonly anaerobically co-digested, which though may be differently affected by pretreatment. Previous work has found that calcium peroxide (CaO2) pretreatment effectively enhanced anaerobic digestion of WAS. However, the feasibilities of this strategy on PS anaerobic digestion and co-digestion of WAS and PS are still unclear. Herein, this work provided new insights into these systems. Biomethane potential test demonstrated that CaO2 pretreatment at 0.02-0.26 g/g-volatile suspended solids (VSS) promoted anaerobic digestion of PS. Then the feasibility of CaO2 pretreatment for improving anaerobic co-digestion of PS and WAS mixture was confirmed, with the highest improvement in methane production, VSS destruction and sludge reduction being approximately 37.4%, 38.9% and 19.9%, achieved at 0.14 g/g-VSS of CaO2. Process modelling analysis revealed that CaO2 pretreatment increased both degradable faction and actually degraded fraction in sludge mixture. The changes of sludge characteristics via pretreatment and key enzyme activity in sludge anaerobic co-digestion system demonstrated that increased CaO2 concentration resulted in increased soluble organics release from sludge mixture in the pretreatment stage and inhibited activity of coenzyme F420 responsible for methanogenesis. Further mechanism investigation disclosed that OH-, O2- and OH were main contribution factors, and the order of their contributions were OH- >O2- >OH. This work laid the theoretical foundation and provided guidance for the practical application of CaO2 pre-treatment technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Peróxidos , Eliminação de Resíduos Líquidos/métodos
11.
Bioresour Technol ; 321: 124493, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33310385

RESUMO

The effects of undulating seasonal temperature change (USTC) (10.1 °C-31.8 °C) on the N and carbon removal efficiency of simultaneous anammox and denitrification (SAD) were investigated, and the recovery performance of SAD was simulated. Results showed that 15 °C was the critical temperature of SAD for N and carbon removal under USTC from summer to winter. The removal efficiency of NH4+-N was improved in the final stage after temperature rise, but still lower than that in summer after long-term low temperature inhibition. The contribution of anammox to N removal was more than denitrification. The abundance of anammox bacteria (AnAOB) in SAD reactor was 8.8%-11.7% from summer to autumn. Candidatus Kuenenia replaced Candidatus Brocadia as the main AnAOB gradually. Finally, AnAOB abundance increased from 4.2% to 6.6% after recovery, and the abundance of denitrifying bacteria (DB) became the highest, which mainly includes Thauera and Hydrogenophaga.


Assuntos
Desnitrificação , Microbiota , Reatores Biológicos , Nitrogênio , Oxirredução , Estações do Ano , Esgotos , Temperatura
12.
Ultrason Sonochem ; 63: 104909, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31945559

RESUMO

Harmful algal blooms negatively impact ecosystems and threaten drinking water sources. One potential method to effectively counteract algal blooms is ultrasonication. However, ultrasonication can easily lead to the release of intracellular organic matter (IOM). The purpose of this study was to investigate the relationship between the destruction of algal cells and IOM release at different ultrasound frequencies. Microcystis aeruginosa cells were ultrasonicated at 20 kHz with an intensity of 0.038 W/mL, 740 kHz with an intensity of 0.113 W/mL, and 1120 kHz with an intensity of 0.108 W/mL. The IOM release was detected by fluorescence spectroscopy in addition to the more commonly used haemocytometry and optical density. After ultrasonication for 15 min, the removal rate of algal cells reached 10.5% at 20 kHz, 9.46% at 740 kHz, and 35.4% at 1120 kHz. The 20 kHz and 740 kHz ultrasound caused local damage to algal cells and then disrupted them, whereas the 1120 kHz ultrasound directly disrupted most algal cells. The extracellular organic matter (EOM), which was increased by ultrasonication, mainly consisted of protein-like compounds, chlorophyll, and a small amount of humic-like substances. Gas vacuoles had been destructed before the cells were broken, as indicated by the decrease of cell size and the wrinkles on the cell surface. Moreover, the removal of algae cells while upholding integrity is more conducive to the safety of the water environment.


Assuntos
Microcystis/metabolismo , Compostos Orgânicos/metabolismo , Sonicação
13.
Huan Jing Ke Xue ; 40(11): 5057-5065, 2019 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854574

RESUMO

To understand the relationship between nitrogen and carbon removal performance and the microbial community during start-up of simultaneous ANAMMOX and denitrification (SAD), nitrogen and carbon removal performance and microbial community change were studied by gradually increasing the influent COD concentration. The results showed that with the increase of the influent COD concentration, NH4+-N and NO2--N effluent remained stable, and the average removal rate was more than 98%. The removal rate of TN increased gradually, and the rate was 95.6% in the third stage, which was 6.8% higher than that of ANAMMOX in theory. ΔNO3--N/ΔNH4+-N decreased significantly from 0.15-0.17 to 0.03-0.07. The contribution rate of ANAMMOX to nitrogen removal decreased gradually, denitrification for nitrogen removal increased gradually, and the COD removal rate increased. Sludge activity analysis showed that the denitrification activity of sludge increased significantly and the ANAMMOX activity decreased slightly after the start-up of SAD. High throughput sequencing results showed that the dominant phyla of microorganisms in the reactor were Chloroflexi, Planctomycetes, Firmicutes, Armatimonadetes, and Proteobacteria. The characteristics of the microbial community in the reactor were closely related to the performance of SAD in nitrogen and carbon removal. The main functional microorganisms related to nitrogen and carbon removal were ANAMMOX bacteria, anaerobic digestive bacteria, and denitrifying bacteria. The abundance of ANAMMOX bacteria decreased after the start-up of SAD, and the anaerobic digestive bacteria and heterotrophic denitrifying bacteria increased significantly.


Assuntos
Desnitrificação , Microbiota , Reatores Biológicos , Nitrogênio , Oxirredução , Esgotos
14.
Int J Ophthalmol ; 12(10): 1582-1588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637194

RESUMO

AIM: To explore an improved procedure involving incomplete fluid-air exchange for idiopathic macular hole (IMH), and the closure rate, visual function, and the visual field of macular holes (MHs) were evaluated. METHODS: This prospective randomized controlled study, included 40 eyes of 40 patients with IMH who were treated with pars plana vitrectomy and peeling of the internal limiting membrane. They were grouped by random digital table. Twenty-one eyes underwent incomplete fluid-air exchange (IFA) and 19 eyes underwent traditional complete fluid-air exchange (CFA) as the control group. Outcomes included best-corrected visual acuity (BCVA), intraocular pressure, and optical coherence tomography, light adaptive electroretinography, and visual field evaluations. RESULTS: All MHs <400 µm were successfully closed. BCVAs before and 6mo after surgery were 0.82±0.41 logMAR and 0.28±0.17 logMAR in IFA group and 0.86±0.34 logMAR and 0.34±0.23 logMAR in CFA group, respectively. The electroretinogram analysis of patients in IFA group revealed increases in b-wave amplitudes at 1, 3, and 6mo after surgery. Additionally, patients in IFA group showed an amplitude increase of 28.6% from baseline at 6mo (P<0.05), while no obvious improvements were noted in CFA group. Although there were no statistically significant improvements in either group, the IFA group showed a slight increase in mean sensitivity (P>0.05). CONCLUSION: IFA is a reliable method that offers comparable closure rate to CFA and facilitates improvements in visual function.

15.
Ultrason Sonochem ; 55: 232-242, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30712852

RESUMO

Ultrasonic treatment has attracted much attention because of its physical and chemical effects that are distinct from those of chemical agents. In particularly, high-frequency ultrasound is known as an effective method because the theoretical resonance frequency of the gas vesicles in Microcystis aeruginosa is in the high frequency range (>100 kHz), which causes gas vesicles collapse and changes the settleability of the algal cells. In this work, the effects of the ultrasonic frequency, acoustic power density and duration on enhancing coagulation to remove turbidity in algae-laden water were studied. In order to explain the mechanism, the morphology of algae cells, the changes in extracellular organic substances, the zeta potential and the formation of hydroxyl radicals were analyzed systematically. Finally, Zeta potentials and flocs morphology after adding PAC were investigated to verify the mechanism. The results showed that the frequency exhibited fewer effects than power and duration on coagulation. SEM images showed that there were more severe cellular damages at 430 and 740 kHz than other frequencies. Sonication could cause the collapse of gas vesicle inside the cell, which was due to the instantaneous high pressure generated by the ultrasonic cavitation instead of the resonance. Furthermore, sonication would result in an increase in proteins in extracellular organic matter (EOM) with continuous ultrasonic irradiation, indicating that a small amount of proteins could promote coagulation and that the accumulation of proteins would inhibit coagulation. Free radical content testing showed that the production of excessive free radicals was often accompanied by a deterioration of the coagulation. The proper mechanical effects were the main mechanism of ultrasonic enhanced coagulation. Thus, it was recommended that the appropriate ultrasonic condition was the one that resulted in a small amount of protein leakage and little generation of free radicals, which occurred at 740 kHz and 0.02 W/mL in approximately 5 min, and would significantly enhance the turbidity removal rate in algae-containing water from approximately 80-90%.


Assuntos
Microcystis/química , Sonicação , Microbiologia da Água , Purificação da Água/métodos , Proteínas de Bactérias/análise , Radical Hidroxila/química , Microcystis/isolamento & purificação , Polissacarídeos/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA