Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
iScience ; 26(11): 108127, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876816

RESUMO

Solar-driven thermochemical conversion of H2O and CO2 into sustainable fuels, based on redox cycle, provides a promising path for alternative energy, as it employs the solar energy as high-temperature heat supply and adopts H2O and CO2 as initial feedstock. This review describes the sustainable fuels production system, including a series of physical and chemical processes for converting solar energy into chemical energy in the form of sustainable fuels. Detailed working principles, redox materials, and key devices are reviewed and discussed to provide systematic and in-depth understanding of thermochemical fuels production with the aid of concentrated solar power technology. In addition, limiting factors affecting the solar-to-fuel efficiency are analyzed; meanwhile, the improvement technologies (heat recovery concepts and designs) are summarized. This study therefore sets a pathway for future research works based on the current status and demand for further development of such technologies on a commercial scale.

2.
Elife ; 122023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930206

RESUMO

Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.


Assuntos
Hipotálamo , Núcleos Parabraquiais , Ratos , Animais , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia
3.
Glob Chall ; 6(12): 2200050, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532239

RESUMO

Lithium-ion batteries (LIBs) are regarded to be the most promising electrochemical energy storage device for portable electronics as well as electrical vehicles. However, due to their limited-service life, tons of spent LIBs are expected to be produced in the recent years. Suitable recycling technology is therefore becoming more and more important as improper treatment of spent LIBs, especially the aged organic electrolyte, can cause severe environmental pollution and threats to human health. The organic solvents and high concentration of lithium salts in aged electrolytes are always sensitive toward water and air, which would easily hydrolyze and decompose into toxic fluorine-containing compounds, leading to severe fluorine pollution of the surrounding environment. Hence, recycling aged electrolytes from spent LIBs is an efficient way to avoid this potential risk to the environment. However, several issues inhibit the realization of electrolyte recycling, including the volatile, inflammable, and toxic nature of the electrolytes, the difficulty to extract electrolytes from the electrodes and separators, and various electrolyte compositions inside LIBs from different applications and companies. Herein, the current progress in recycling methods for aged electrolytes from spent LIBs is summarized and perspectives on future development of electrolyte recycling are presented.

4.
Sci Rep ; 12(1): 18168, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307504

RESUMO

SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression. The expression of ACE2 and TMPRSS2 was higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48+ secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the gene expression data confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose, these genes are not predominantly expressed in cell populations modulated by smoking. In individuals with elevated lung cancer risk, smoking-induced VE gene expression changes in the nose likely have minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Detecção Precoce de Câncer , Peptidil Dipeptidase A/metabolismo , Neoplasias Pulmonares/metabolismo , Brônquios/metabolismo , Fumar/efeitos adversos , Fumar/genética
5.
ACS Appl Mater Interfaces ; 14(16): 18600-18606, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420776

RESUMO

The liquid fuel cell, with its high energy density and ease of fuel handling, has attracted great attention worldwide. However, its real application is still being greatly hindered by its limited power density. Hence, the recently proposed and demonstrated fuel cell, using an electrically rechargeable liquid fuel (e-fuel), is believed to be a candidate with great potential due to its significant performance advancement. Unlike the conventional alcoholic liquid fuels, the e-fuel possesses excellent reactivity, even on carbon-based materials, which therefore allows the e-fuel cell to achieve superior performance without any noble metal catalysts. However, it is found that, during the cell operation, the water generated at the cathode following the oxygen reduction reaction could lead to a water flooding problem and further limit the cell performance. To address this issue, in this work, by manipulating the cathode composition, a blended binder cathode using both Nafion and polytetrafluoroethylene as binding agents is fabricated and demonstrated its superiority in the fuel cell to achieve an enhanced water management and cell performance. Furthermore, using the developed cathode, a fuel cell stack is designed and fabricated to power a 3D-printed toy car, presenting this system as a promising device feasible for future study and real applications.

6.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203245

RESUMO

Col4a3-/- Alport mice serve as an animal model for renal fibrosis. MicroRNA-21 (miR-21) expression has been shown to be increased in the kidneys of Alport syndrome patients. Here, we investigated the nephroprotective effects of Lademirsen anti-miR-21 therapy. We used a fast-progressing Col4a3-/- mouse model with a 129/SvJ background and an intermediate-progressing F1 hybrid mouse model with a mixed genetic background, with angiotensin-converting enzyme inhibitor (ACEi) monotherapy in combination with anti-miR-21 therapy. In the fast-progressing model, the anti miR-21 and ACEi therapies showed an additive effect in the reduction in fibrosis, the decline of proteinuria, the preservation of kidney function and increased survival. In the intermediate-progressing F1 model, the anti-miR-21 and ACEi therapies individually improved kidney pathology. Both also improved kidney function and survival; however, the combination showed a significant additive effect, particularly for survival. RNA sequencing (RNA-seq) gene expression profiling revealed that the anti-miR-21 and ACEi therapies modulate several common pathways. However, anti-miR-21 was particularly effective at normalizing the expression profiles of the genes involved in renal tubulointerstitial injury pathways. In conclusion, significant additive effects were detected for the combination of anti-miR-21 and ACEi therapies on kidney function, pathology and survival in Alport mouse models, as well as a strong differential effect of anti-miR-21 on the renal expression of fibrotic factors. These results support the addition of anti-miR-21 to the current standard of care (ACEi) in ongoing clinical trials in patients with Alport syndrome.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , MicroRNAs , Nefrite Hereditária , Insuficiência Renal , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antagomirs , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Insuficiência Renal/tratamento farmacológico
7.
Cancer Treat Res Commun ; 29: 100486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34794107

RESUMO

INTRODUCTION: Although three randomized control trials have proven mortality benefit of CT lung cancer screening (CTLS), <5% of eligible US smokers are screened. Some attribute this to fear of harm conveyed at shared decision visits, including the harm of overdiagnosis/overtreatment of indolent BAC-like adenocarcinoma. METHODS: Since the frequency of indolent cancers has not been compared between CTLS and routinely detected cohorts, we compare pathology and RNA expression of 86 NCCN high-risk CTLS subjects to 83 high-risk (HR-R) and 51 low-risk (LR-R) routinely detected patients. Indolent adenocarcinoma was defined as previously described for low malignant potential (LMP) adenocarcinoma along with AIS/MIA. Exome RNA sequencing was performed on a subset of high-risk (CTLS and HR-R) FFPE tumor samples. RESULTS: Indolent adenocarcinoma (AIS, MIA, and LMP) showed 100% disease-specific survival (DSS) with similar frequency in CTLS (18%) and HR-R (20%) which were comparatively lower than LR-R (33%). Despite this observation, CTLS exhibited intermediate DSS between HR-R and LR-R (5-year DSS: 88% CTLS, 82% HR-R, & 95% LR-R, p = 0.047), possibly reflecting a 0.4 cm smaller median tumor size and lower frequency of tumor necrosis compared to HR-R. WGCNA gene modules derived from TCGA lung adenocarcinoma correlated with aggressive histologic patterns, mitotic activity, and tumor invasive features, but no significant differential expression between CTLS and HR-R was observed. CONCLUSION: CTLS subjects are at no greater risk of overdiagnosis from indolent adenocarcinoma (AIS, MIA, and LMP) than risk-matched patients whose cancers are discovered in routine clinical practice. Improved outcomes likely reflect detection and treatment at smaller size.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/diagnóstico , Expressão Gênica/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Idoso , Estudos de Coortes , Detecção Precoce de Câncer , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Medição de Risco , Análise de Sobrevida
8.
Res Sq ; 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34729557

RESUMO

Background : SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments has not been fully characterized using matched samples from large cohorts. Results : Gene expression data from 793 nasal and 1,673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking was the only clinical factor significantly and reproducibly associated with VE gene expression. ACE2 and TMPRSS2 expression were higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48 + secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the RNA-seq confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. Conclusions : The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose these genes are not predominantly expressed in cell populations modulated by smoking. Smoking-induced VE gene expression changes in the nose likely has minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.

9.
ACS Appl Mater Interfaces ; 13(41): 48795-48800, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609855

RESUMO

Passive fuel cells, using diffusion and natural convection for fuel delivery, are regarded as promising candidates for powering portable devices including mobile phones and laptops. However, the performance of passive fuel cells which employ typical liquid alcohol fuels are still limited, which thereby greatly hampered their commercialization progress. Recently, a novel concept named the electrically rechargeable liquid fuel (e-fuel), with its rechargeability, cost-effectiveness, and superior reactivity, has attracted increasing attention. In this study, a passive fuel cell using the liquid e-fuel and the ambient air for electricity production is designed and fabricated. This passive fuel cell is demonstrated to achieve a peak power density of 116.2 mW cm-2 along with a stable operation for over 350 h, exhibiting great prospect for future applications.

10.
Cells ; 8(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752117

RESUMO

Prostate cancer is one of the most common cancers among men. Currently available therapies improve patient survival against local prostate cancer but have shown severe side effects. Advanced prostate cancer is still incurable. Studies have suggested the involvement of non-coding RNAs, especially micro-RNAs (miRNAs), in the regulation of multiple cellular events in cancer and thus several clinical trials are ongoing using miRNAs mimics or inhibitors. We previously demonstrated that miRNA-29b-3p (miR-29b) was downregulated in prostate cancer and that the overexpression of miR-29b limited prostate cancer metastasis. However, the therapeutic potential of the miR-29b against prostate cancer remains unknown. Here, we evaluated the therapeutic role of miR-29b in in vivo prostate tumors in a mouse model. Intratumoral injection of mimic miR-29b significantly inhibited prostate cancer xenograft tumor growth in nude mice. Subsequent study demonstrated that the overexpression of miR-29b reduced prostate cancer cell PC3 proliferation in a time dependent manner and induced cell death. Mechanistic study using a cancer pathway specific transcriptomic array revealed a significant overexpression of the pro-apoptotic gene BCL2L11 (Bim) in the miR-29b overexpressed PC3 cells, which was further verified in PC3 cells overexpressing miR-29b. We also observed a significant induction of Bim protein in miR-29b treated xenograft tumors. The induction of cytosolic accumulation of cytochrome C and PARP cleavage in miR-29b overexpressed PC3 cells was observed. Thus, our results suggest that miR-29b can be used as a potential molecule for prostate cancer therapy.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , MicroRNAs/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Regulação para Cima , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , MicroRNAs/farmacologia , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Cardiovasc Med ; 6: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931314

RESUMO

Blood pressure (BP) is a highly heritable trait and a major cardiovascular disease risk factor. Genome wide association studies (GWAS) have implicated a number of susceptibility loci for systolic (SBP) and diastolic (DBP) blood pressure. However, a large portion of the heritability cannot be explained by the top GWAS loci and a comprehensive understanding of the underlying molecular mechanisms is still lacking. Here, we utilized an integrative genomics approach that leveraged multiple genetic and genomic datasets including (a) GWAS for SBP and DBP from the International Consortium for Blood Pressure (ICBP), (b) expression quantitative trait loci (eQTLs) from genetics of gene expression studies of human tissues related to BP, (c) knowledge-driven biological pathways, and (d) data-driven tissue-specific regulatory gene networks. Integration of these multidimensional datasets revealed tens of pathways and gene subnetworks in vascular tissues, liver, adipose, blood, and brain functionally associated with DBP and SBP. Diverse processes such as platelet production, insulin secretion/signaling, protein catabolism, cell adhesion and junction, immune and inflammation, and cardiac/smooth muscle contraction, were shared between DBP and SBP. Furthermore, "Wnt signaling" and "mammalian target of rapamycin (mTOR) signaling" pathways were found to be unique to SBP, while "cytokine network", and "tryptophan catabolism" to DBP. Incorporation of gene regulatory networks in our analysis informed on key regulator genes that orchestrate tissue-specific subnetworks of genes whose variants together explain ~20% of BP heritability. Our results shed light on the complex mechanisms underlying BP regulation and highlight potential novel targets and pathways for hypertension and cardiovascular diseases.

12.
ChemSusChem ; 12(4): 908-914, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30614182

RESUMO

An efficient, scalable, and cost-effective approach was developed to synthesize a hierarchically constructed polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) separator from an instantly reformed solution. With partially dissolved PVDF-HFP as separator skeleton, the incorporation of warm PVDF-HFP solution in acetone led to a cross-linked structure before N-methyl-2-pyrrolidone (NMP) was added to solidify the hierarchical inner-bound structure of fresh PVDF-HFP. Owing to its hierarchical microporous structure, the separator exhibited remarkable wettability with a small contact angle of 18° and an electrolyte uptake of 114.81 %, leading to a high room-temperature ionic conductivity of 3.27×10-3  S cm-1 . The hierarchical structure provided short pathways for efficient ion transfer with more electrolyte trapped inside and small intervals between adjacent nanopores. The separator outperformed commercial separators, showing high rate capacities of 104.8 mAh g-1 at 5 C and 95 mAh g-1 at 10 C as well as unparalleled perfect capacity retention at 10 C after 1000 cycles.

13.
J Environ Health ; 75(5): 14-20; quiz 44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23270108

RESUMO

Exposure limits for arsenic and lead in drinking water have long been established by the U.S. Environmental Protection Agency and new regulations regarding the presence of these contaminants in bottled water went into effect in California in 2009. No comparable exposure limits or regulations are available, however, for juices and other beverages that may contain arsenic and lead. In the study described in this article, 20 apple juices (or ciders), 15 apple-containing juices, one grape, and one citrus juice were analyzed for arsenic and lead. Arsenic was detected in all juices while lead was detected in more than 94% of juices analyzed. Twelve samples (32%) demonstrated arsenic levels nearly at or above the drinking water exposure limit of 10 parts per billion. No juices contained lead above drinking water exposure limits. Expanding drinking water limits to include juices (and other frequently consumed beverages) would better protect consumers while regular testing of these juices would better inform consumers of the risks posed by specific juices and brands.


Assuntos
Arsênio/análise , Bebidas/análise , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Frutas , Chumbo/análise , Arsênio/normas , Criança , Citrus , Monitoramento Ambiental , Poluentes Ambientais/normas , Humanos , Chumbo/normas , Malus , Medição de Risco , Estados Unidos , United States Environmental Protection Agency/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...