Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003065

RESUMO

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Assuntos
Antibacterianos , Gado , Esterco , Microbiologia do Solo , Animais , Solo/química , Sequestro de Carbono , Carbono/metabolismo , Fósforo , Reciclagem , Poluentes do Solo/metabolismo , Bovinos , Suínos , Nitrogênio/análise , Oxitetraciclina
2.
JOR Spine ; 7(4): e70006, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39391171

RESUMO

Background: Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods: To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and µCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results: At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion: The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.

3.
Front Microbiol ; 15: 1441476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184027

RESUMO

Background: The Herpesviridae family contains several human-related viruses, which are able to establish colonizing and latency in the human body, posing a significant threat to the prognosis of patients. Pulmonary infections represent one of the predominant infectious diseases globally, characterized by diverse and multifaceted clinical manifestations that have consistently attracted clinician's concern. However, the relationship of herpesviruses on the prognosis of pulmonary infections and the respiratory microbiota remains poorly understood. Methods: Here, we retrospectively analyzed respiratory samples from 100 patients with pulmonary infection detected by metagenomic next-generation sequencing (mNGS). Results: Employing mNGS, five herpesvirus species were detected: Human alphaherpesvirus 1 (HSV-1), Human gammaherpesvirus 4 (EBV), Human betaherpesvirus 5 (CMV), Human betaherpesvirus 7 (HHV-7), and Human betaherpesvirus 6B (HHV-6B). Regression analysis showed that the age and positivity of herpesviruses in patients were independently correlated with ICU admission rates. In addition, positivity of herpesvirus was related with increased ICU days and total hospital stay. The herpesvirus-positive group demonstrated markedly higher incidences of co-infections and fungi-positive, predominantly involving Pneumocystis jirovecii and Aspergillus fumigatus. Analysis of respiratory microbiota revealed a substantially altered community composition within the herpesvirus-positive group, and herpesviruses were significantly positively correlated with the diverse respiratory opportunistic pathogens. Conclusion: Overall results substantiate that the active herpesviruses in patients with pulmonary infections were significantly associated with high ICU admission rate. Moreover, the herpesviruses promotes the dysbiosis of the respiratory microbiota and an increased proportion of co-infections. These insights could contribute to unraveling the underlying mechanisms connecting active herpesviruses to the progression of severe illnesses.

4.
Acta Biomater ; 187: 396-408, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39168421

RESUMO

The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) offers a promising antimicrobial strategy for periodontitis, yet faces challenges like complex material structure and limited NIR-I light penetration. Additionally, low endogenous H2O2 levels in biofilm and a focus on bacterial eradication over colonization prevention limit current treatments. To address these issues, we newly introduce a single-material system (Cu3P@PAH@Lox) that integrates dual functionalities to synergistically enhance antimicrobial effects and significantly reduce pathogen co-aggregation. This system utilizes PTT to increase local temperature, boosting •OH production in CDT while downregulating heat shock proteins to enhance PTT efficacy, forming a self-reinforcing feedback loop. Lactate oxidase (Lox) is employed to convert lactate-a metabolite in periodontal biofilm-into H2O2, further amplifying CDT's potential. In vitro Cu3P@PAH@Lox demonstrates a remarkable synergistic effect against dual-species biofilms by more than 2-log reduction of colony-forming unit. Moreover, Cu3P@PAH@Lox exhibits outstanding synergistic antibacterial performances to alleviate inflammation and destruction of tissue in vivo periodontitis model. Furthermore, the mechanism of pathogen co-aggregation disruption by PTT is verified via the Cbe-Ltp1-Ptk1-fimA signaling pathway. This single-material multimodal system we have herein demonstrated for the first time marks a significant advancement in periodontitis treatment, eradicating microbes and preventing bacterial colonization, offering a path to comprehensive periodontal care. STATEMENT OF SIGNIFICANCE: The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) has been considered a promising therapy for periodontitis. Yet, facing challenges, the complex material structure, limited NIR-I light penetration, low endogenous H2O2 level in biofilm, and a focus on bacterial eradication over colonization prevention are still insufficient. This study pioneers a unique, single-material system (Cu3P@PAH@Lox) that synergistically enhances antimicrobial effects and substantially curtails pathogen co-aggregation, advancing periodontitis therapy. By exploiting PTT to elevate local temperatures, thereby increasing hydroxyl radical production in CDT and concurrently suppressing heat shock proteins, the system establishes a potent, self-enhancing loop. Furthermore, lactate oxidase is innovatively utilized to convert lactate from periodontal biofilm into hydrogen peroxide, augmenting the efficacy of CDT. The introduction of Cu3P@PAH@Lox is poised to revolutionize periodontitis treatment, eliminating microbes and impeding bacterial colonization, thereby charting a course for comprehensive periodontal management.


Assuntos
Biofilmes , Cobre , Periodontite , Terapia Fototérmica , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Periodontite/terapia , Periodontite/patologia , Animais , Cobre/química , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Peróxido de Hidrogênio , Raios Infravermelhos , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Humanos , Porphyromonas gingivalis/efeitos dos fármacos , Oxigenases de Função Mista
5.
J Am Chem Soc ; 146(32): 22180-22192, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087925

RESUMO

Metal nanoclusters (NCs) hold great promise for expressing multipeak emission based on their well-defined total structure with diverse luminescent centers. Herein, we report the surface motif-dictated triple phosphorescence of Au NCs with dynamic color turning. The deprotonation-triggered isomerization of terminal thiouracils can evolve into a mutual transformation among their hierarchical motifs, thus serving a multipeak-emission expression with good tailoring. More importantly, the underlying electron transfer is thoroughly identified by excluding the radiative and nonradiative energy transfer, where electrons flow from the first phosphorescent state to the last two ones. The findings shed light on finely tailing motifs at the molecular level to motivate studies on customizable luminescence characteristics of metal NCs.

6.
Sci Total Environ ; 947: 174480, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972400

RESUMO

Reference evapotranspiration (ET0) estimation is crucial for efficient irrigation planning, optimized water management and ecosystem modeling, yet it presents significant challenges, particularly when meteorological data availability is limited. This study utilized remote sensing data of land surface temperature (LST), day of year, and latitude, and employed a machine learning approach (i.e., random forest) to develop an improved remote sensing ET0 model. The model performed excellently in 567 meteorological stations in China with an R2 of 0.97, RMSE of 0.40, MBE of 0.00, and MAPE of 0.11 compared to the FAO-PM ET0; it also performed well globally, yielding an average R2 of 0.97 and RMSE of 0.43 across 120 sites in mid-latitude (20°-50°) regions. This model demonstrates simplicity, accuracy, robust and generalization, holding great potential for widespread application, especially in the large-scale, high-resolution estimation of ET0. This study will contribute to advancements in water resources management, agricultural planning, and climate change studies.

7.
Nat Prod Res ; : 1-9, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824431

RESUMO

A novel cytochalasin named diaporchalasin A (1) bearing a cinnamenyl and an epoxy-macrocycloketone, and a new benzenepropionic acid derivative (2), and two known compounds (3 and 4) were isolated from Conus marmoreus-derived fungus Diaporthe sp. XMA007. Their structures were elucidated through detailed spectroscopic analysis, and the absolute configuration of 1 was determined by conformational analysis and TDDFT-ECD calculation. Their activity evaluation on PDE4 inhibition and breast cancer cell cytotoxicity were conducted, and compound 1 showed moderate inhibition on PDE4.

8.
J Control Release ; 370: 600-613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735394

RESUMO

The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.


Assuntos
Cério , Ouro , Nanocompostos , Periodontite , Sulfatos , Cério/química , Cério/farmacologia , Animais , Periodontite/tratamento farmacológico , Nanocompostos/química , Ouro/química , Sulfatos/química , Espécies Reativas de Oxigênio/metabolismo , Catálise , Nanotubos/química , Antibacterianos/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Masculino , Camundongos , Biofilmes/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos
9.
Int Arch Allergy Immunol ; 185(8): 775-785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38588656

RESUMO

INTRODUCTION: Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent allergic symptom of diseases of allergic rhinitis and asthma. However, the mechanism of CARAS remains unclear. The study aimed to investigate the impact of microRNA-21 (miR-21) on CARAS via targeting poly (ADP-ribose) polymerase-1 (PARP-1) and phosphoinositide 3-kinase (PI3K)/AKT pathways. METHODS: The levels of miR-21-5p and PARP-1 in CARAS patients were detected by quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). An ovalbumin-sensitized mouse model of CARAS was established. And knock down of miR-21-5p was constructed by intranasally administering with miR-21-5p shRNA-encoding adeno-associated virus vector. Airway resistance and airway inflammatory response were detected. ELISA was used to evaluate IL-4/IL-5/IL-13 levels in bronchoalveolar lavage fluid (BALF). Expression levels of E-cadherin, fibronectin, and α-SMA were determined using Western blotting. The levels of PARP-1 and the activation of PI3K/AKT were assayed. RESULTS: Downregulation of miR-21-5p relieved pathophysiological symptoms of asthma including airway hyperreactivity and inflammatory cell infiltration. Downregulation of miR-21-5p significantly reduced the levels of IL4, IL-5, and IL-13 in BALF. Additionally, downregulation of miR-21-5p inhibited the epithelial-mesenchymal transition (EMT) process in CARAS mice. Furthermore, miR-21-5p regulated PARP-1 and was involved in PI3K/AKT activation in CARAS mice. CONCLUSION: Downregulation of miR-21-5p ameliorated CARAS-associated lung injury by alleviating airway inflammation, inhibiting the EMT process, and regulating PARP-1/PI3K/AKT in a mouse model of CARAS.


Assuntos
Asma , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , MicroRNAs , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas c-akt , Rinite Alérgica , Animais , MicroRNAs/genética , Asma/metabolismo , Asma/genética , Asma/imunologia , Transição Epitelial-Mesenquimal/genética , Camundongos , Rinite Alérgica/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Masculino
10.
Heliyon ; 10(7): e28469, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560267

RESUMO

There is mounting evidence that coronavirus disease 2019 (COVID-19) can cause immune dysregulation. The consequence of this immune dysregulation may contribute to susceptibility to tuberculosis (TB). Thyroid gland involvement by TB is extremely uncommon and typically the result of disseminated infection. It can be hard to diagnose because there are no identifiable symptoms. We present the case of a Chinese patient who had a fever again after COVID-19 infection that was finally diagnosed as thyroid tuberculosis with a cold abscess. Clinicians should maintain a high index of suspicion for high-risk patients from endemic regions with medical comorbidities, such as immunocompromised disease and malnutrition.

11.
COPD ; 21(1): 2327352, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38573027

RESUMO

Accumulating evidence has highlighted the importance of immune cells in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the understanding of the causal association between immunity and COPD remains incomplete due to the existence of confounding variables. In this study, we employed a two-sample Mendelian randomization (MR) analysis, utilizing the genome-wide association study database, to investigate the causal association between 731 immune-cell signatures and the susceptibility to COPD from a host genetics perspective. To validate the consistency of our findings, we utilized MR analysis results of lung function data to assess directional concordance. Furthermore, we employed MR-Egger intercept tests, Cochrane's Q test, MR-PRESSO global test, and "leave-one-out" sensitivity analyses to evaluate the presence of horizontal pleiotropy, heterogeneity, and stability, respectively. Inverse variance weighting results showed that seven immune phenotypes were associated with the risk of COPD. Analyses of heterogeneity and pleiotropy analysis confirmed the reliability of MR results. These results highlight the interactions between the immune system and the lungs. Further investigations into their mechanisms are necessary and will contribute to inform targeted prevention strategies for COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Bases de Dados Factuais
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 225-232, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650129

RESUMO

Abnormal expression of non-coding microRNA is associated with the development of combined allergic rhinitis and asthma syndrome (CARAS). However, the function of miR-4454 in CARAS is unknown. Our study aimed to reveal the clinical significance and related mechanism of miR-4454 in CARAS. Blood samples from 38 cases of CARAS and 43 cases of healthy subjects were collected to detect the expression of miR-4454. House dust mite (HDM) sensitization and challenge-induced bronchial epithelial cells to simulate the asthma state model in vitro, miR-4454 mimics and inhibitor transfection to detect the expression level of pro-inflammatory cytokines, cell survival rate and migration ability, flow cytometry and western blot (WB) Detection of cell cycle, apoptosis and inflammation-related protein levels. Compared with healthy controls, the expression of miR-4454 in the blood of CARAS patients was significantly up-regulated, and IL-6 and IL-8 were significantly up-regulated in the HDM treatment group, indicating that the model induction was successful. After overexpression of miR-4454, cell proliferation and migration in the HDM-treated group were significantly inhibited, and the levels of early apoptosis and inflammation-related proteins (IL-17, IL-17RD, TNF-α, GCSF and NF-κB) were increased High; after inhibiting miR-4454, cell proliferation and migration were significantly enhanced, and the levels of apoptosis and inflammation-related proteins were decreased. This study found that inhibiting the expression of miR-4454 can improve HDM-induced cell injury, which may be related to miR-4454 regulating the activation of IL-17/NF-кB inflammatory axis.


Assuntos
Apoptose , Asma , Proliferação de Células , MicroRNAs , Rinite Alérgica , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Rinite Alérgica/genética , Rinite Alérgica/metabolismo , Asma/genética , Asma/patologia , Masculino , Feminino , Apoptose/genética , Adulto , Proliferação de Células/genética , Animais , Inflamação/genética , Inflamação/patologia , Movimento Celular/genética , Pyroglyphidae/imunologia , Citocinas/metabolismo , Citocinas/sangue , NF-kappa B/metabolismo , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Síndrome , Relevância Clínica
13.
Int Immunopharmacol ; 130: 111739, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442574

RESUMO

Persistent type (T) 2 airway inflammation plays an important role in the development of severe asthma. However, the molecular mechanisms leading to T2 severe asthma have yet to be fully clarified. Human normal lung epithelial cells (BEAS-2B cells) were transfected with LINC00158/BCL11B plasmid/small interfering RNA (siRNA). Levels of epithelial-mesenchymal transition (EMT)-related markers were measured using real-time qPCR (RT-qPCR) and western blot. A dual luciferase reporter assay was used to validate the targeting relationship between LINC00158 and BCL11B. The effects of LINC00158-lentivirus vector-mediated overexpression and dexamethasone on ovalbumin (OVA)/lipopolysaccharide (LPS)-induced severe asthma were investigated in mice in vivo. Our study showed that overexpression of LINC00158/BCL11B inhibited the levels of EMT-related proteins, apoptosis, and promoted the proliferation of BEAS-2B cells. BCL11B was a direct target of LINC00158. And LINC00158 targeted BCL11B to regulate EMT, apoptosis, and cell proliferation of BEAS-2B cells. Compared with severe asthma mice, LINC00158 overexpression alleviated OVA/LPS-induced airway hyperresponsiveness and airway inflammation, including reductions in T helper 2 cells factors in lung tissue and BALF, serum total- and OVA-specific IgE, inflammatory cell infiltration, and goblet cells hyperplasia. In addition, LINC00158 overexpression alleviated airway remodeling, including reduced plasma TGF-ß1 and collagen fiber deposition, as well as suppression of EMT. Additionally, overexpression of LINC00158 enhanced the therapeutic effect of dexamethasone in severe asthmatic mice models. LINC00158 regulates BEAS-2B cell biological function by targeting BCL11B. LINC00158 ameliorates T2 severe asthma in vivo and provides new insights into the clinical treatment of severe asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , RNA Longo não Codificante , Proteínas Repressoras , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Asma/imunologia , Asma/terapia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Supressoras de Tumor/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , Transfecção
14.
NPJ Sci Learn ; 9(1): 26, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538593

RESUMO

Dyslexia and developmental language disorders are important learning difficulties. However, their genetic basis remains poorly understood, and most genetic studies were performed on Europeans. There is a lack of genome-wide association studies (GWAS) on literacy phenotypes of Chinese as a native language and English as a second language (ESL) in a Chinese population. In this study, we conducted GWAS on 34 reading/language-related phenotypes in Hong Kong Chinese bilingual children (including both twins and singletons; total N = 1046). We performed association tests at the single-variant, gene, and pathway levels. In addition, we tested genetic overlap of these phenotypes with other neuropsychiatric disorders, as well as cognitive performance (CP) and educational attainment (EA) using polygenic risk score (PRS) analysis. Totally 5 independent loci (LD-clumped at r2 = 0.01; MAF > 0.05) reached genome-wide significance (p < 5e-08; filtered by imputation quality metric Rsq>0.3 and having at least 2 correlated SNPs (r2 > 0.5) with p < 1e-3). The loci were associated with a range of language/literacy traits such as Chinese vocabulary, character and word reading, and rapid digit naming, as well as English lexical decision. Several SNPs from these loci mapped to genes that were reported to be associated with EA and other neuropsychiatric phenotypes, such as MANEA and PLXNC1. In PRS analysis, EA and CP showed the most consistent and significant polygenic overlap with a variety of language traits, especially English literacy skills. To summarize, this study revealed the genetic basis of Chinese and English abilities in a group of Chinese bilingual children. Further studies are warranted to replicate the findings.

15.
Angew Chem Int Ed Engl ; 63(14): e202319690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320965

RESUMO

Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.


Assuntos
Infecções Bacterianas , Gálio , Porfirinas , Humanos , Ferro/metabolismo , Hemina/metabolismo , Bactérias/metabolismo , Antibacterianos/metabolismo , Biofilmes , Gálio/farmacologia , Porfirinas/farmacologia , Porfirinas/metabolismo , Infecções Bacterianas/tratamento farmacológico , Homeostase , Íons/metabolismo , Polímeros/metabolismo
16.
Curr Cancer Drug Targets ; 24(9): 975-986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204265

RESUMO

BACKGROUND: Autophagy exerts a vital role in the progression of lung squamous cell carcinoma (LUSC). Ubiquitin-specific peptidase 31 (USP31) has recently been found to be involved in the development of a variety of cancers. However, whether USP31 modulates autophagy in LUSC remains unclear. METHODS: This study revealed that high levels of USP31 were discovered in LUSC tissue samples employing the Gene Expression Profiling Interactive Analysis (GEPIA) database, quantitative real- time PCR (qRT-PCR), and Western blot analysis. Cell proliferation was tested via cell counting kit 8 (CCK-8) as well as colony formation, demonstrating that USP31-stable knockdown reduced cell viability. RESULTS: Immunofluorescence analysis illustrated that USP31 knockdown blocked the occurrence of LUSC autophagy. Meanwhile, USP31 has been shown to stabilize the expression of E2F transcription factor 1 (E2F1) through the proteasome pathway. Furthermore, overexpressed E2F1 effectively eliminated the effect of USP31 knockdown on LUSC cell proliferation and autophagy. CONCLUSION: In summary, this investigation proved that USP31 promoted LUSC cell growth and autophagy, at least in part by stabilizing E2F1 expression, which provided a potential therapeutic gene for the treatment of LUSC.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F1 , Neoplasias Pulmonares , Proteases Específicas de Ubiquitina , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
17.
Adv Mater ; 36(13): e2310529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145555

RESUMO

Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Metais , Nanomedicina , Proteínas , Medicina de Precisão
18.
J Infect Dev Ctries ; 17(11): 1566-1573, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38064390

RESUMO

INTRODUCTION: Accurate identification of pathogens that cause pulmonary infections is essential for effective treatment and hastening recovery in adults diagnosed with pneumonia. At present, despite metagenomic next-generation sequencing (mNGS) technology has been widely used in clinical practice for pathogen identification, the clinical significance and necessity of detecting pathogen in bronchoalveolar lavage fluid (BALF) for pneumonia-stricken adults remain ambiguous. METHODOLOGY: In this study, 80 patients suffering from pulmonary infection were enrolled, who were admitted to the Affiliated Changzhou Second People's Hospital of Nanjing Medical University between January 2020 and September 2022. The diagnostic performances of mNGS and conventional methods (CM) were systematically analyzed based on BALF samples, and we further investigated the influence of mNGS and CM in diagnosis modification and treatment. RESULTS: We found a significantly higher positive rate for the mNGS method in contrast to CM. Bacteria were the most common pathogens, and Streptococcus pneumoniae was the most commonly identified pathogen. Candida albicans and Epstein-Barr virus were the most frequently identified fungus and virus. Atypical pathogens such as Mycobacterium tuberculosis, virus Nontuberculous mycobacteria, and Chlamydia psittaci were also identified. A total of 77 patients were identified with mixed infections by mNGS. As the disease progressed and recurrent antibiotic treatment persisted, significant dynamic changes in the clinical manifestation from the BALF samples could be found by mNGS. CONCLUSIONS: This study underscores the efficacy of mNGS in detecting pathogens in BALF samples from patients suffering pulmonary infections. Compared with the CM, mNGS significantly enhanced the positive diagnosis ratio, particularly in diagnosing Mycobacterium tuberculosis, atypical pathogens, and viral or fungal infections.


Assuntos
Infecções por Vírus Epstein-Barr , Mycobacterium tuberculosis , Pneumonia , Adulto , Humanos , Herpesvirus Humano 4 , Pneumonia/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Streptococcus pneumoniae , Sensibilidade e Especificidade
19.
J Inflamm Res ; 16: 6211-6225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145010

RESUMO

Introduction: Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent clinical or subclinical allergic symptom of diseases of the upper and lower respiratory tract. This study is the first to explore the expression profiles of mRNA, lncRNA, and circRNA in CARAS using RNA sequencing, which may provide insight into the mechanisms underlying CARAS. Material and Methods: Whole blood samples from nine participants (three CARAS patients, three AR patients, and three normal control participants) were subjected to perform RNA sequencing, followed by identification of differentially expressed lncRNAs (DElncRNAs), circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Then, lncRNA/circRNA-mRNA regulatory pairs were constructed, followed by functional analysis, immune infiltration analysis, drug prediction, and expression validation with RT-qPCR and ELISA. Results: The results showed that 61 DEmRNAs, 23 DElncRNAs and 3 DEcircRNAs may be related to the occurrence and development of CARAS. KRT8 may be implicated in the development of AR into CARAS. Three immunity-related mRNAs (IDO1, CYSLTR2, and TEC) and two hypoxia-related mRNAs (TKTL1 and VLDLR) were associated with the occurrence and development of CARAS. TEC may be considered a drug target for Dasatinib in treating CARAS. Several lncRNA/circRNA-mRNA regulatory pairs were identified in CARAS, including LINC00452/MIR4280HG/hsa_circ_0007272/hsa_circ_0070934-CLC, HEATR6-DT/LINC00639/LINC01783/hsa_circ_0008903-TEC, RP11-71L14.3-IDO1/SMPD3, RP11-178F10.2-IDO1/HRH4, and hsa_circ_0008903-CYSLTR2, which may indicate potential regulatory effects of lncRNAs/circRNAs in CARAS. Dysregulated levels of immune cell infiltration may be closely related to CARAS. Conclusion: The regulating effect of lncRNA/circRNA-immunity/hypoxia-related mRNA regulatory pairs may be involved in the occurrence and development of CARAS.

20.
Antiviral Res ; 220: 105757, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984567

RESUMO

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Currently, the development of affordable vaccine against Omicron variant of concern (VOC) is necessary. Here, we assessed the safety and immunogenicity of a SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing the spike (S) protein of Omicron BA.1 administrated intranasally (IN) or intramuscularly (IM) in Golden Syrian hamster model. Immunogenicity studies showed that the prime-boost regimen elicited high antibody titers and the modified S antigen (Sm-F) could induce robust antibody response in low dosage immunization through IN route. Sera of the immunized hamsters provided effective cross-neutralizing activity against different Omicron variants, the prototype and delta strains of SARS-CoV-2. Moreover, the vaccine could provide complete immunoprotection in hamsters against the Omicron BA.1 challenge by either intranasal or intramuscular immunization. Overall, our study provides an alternative nasal vaccine against the SARS-CoV-2 Omicron variants.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Vacinas , Animais , Cricetinae , Humanos , Vírus da Doença de Newcastle/genética , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação , Imunização , Mesocricetus , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA