Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 36(4): 1406-11, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26164919

RESUMO

Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.


Assuntos
Chlorella vulgaris , Clorofenóis , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Clorofila , Nitrogênio , Fósforo , Água , Poluentes Químicos da Água
2.
Int J Nanomedicine ; 10: 2775-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897222

RESUMO

A purpose of this study was to establish a novel molecular diagnostic model and provide new insight into the intraoperative evaluation of the sentinel lymph node (SLN) metastasis in breast cancer. A total of 124 breast cancer patients who met the criteria of sentinel lymph node biopsy (SLNB) and underwent intraoperative biopsy were consecutively enrolled in this study. After the SLNs obtained from each patient were labeled, MOC-31 monoclonal antibody-mediated immunomagnetic separation (IMS) and flow cytometry were used to determine the expressions of breast cancer metastasis-related markers, including Mucin 1 (MUC1), CD44v6, and HER2. Alternatively, conventional intraoperative hematoxylin and eosin (HE) staining and cytokeratin immunohistochemistry (CK-IHC) were performed to detect potential SLN metastasis. The sensitivity, specificity, and false-negative rate of the three intraoperative diagnostic methods were compared and analyzed. A total of 55 positive-SLNs were found in 38 breast cancer patients using IMS, yielding a sensitivity of 86.4% (38/44), specificity of 94.7% (36/38), accuracy of 93.5% (116/124), false-positive rate of 2.5% (2/80), false-negative rate of 13.6% (6/44), positive predictive value of 95.5% (42/44), and negative predictive value of 93.0% (80/86). Patients with high expressions of CD44v6, MUC1, and HER2 in SLNs tended to have higher number of positive lymph nodes, among which the MUC1 and HER2 showed significant differences (P<0.05). Therefore, compared with conventional HE staining and CK-IHC, IMS technology has remarkably higher sensitivity and specificity and relative lower false-negative rate, thus making it an effective and feasible intraoperative detection method of SLN for breast cancer diagnosis to some extent.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Separação Imunomagnética/métodos , Biópsia de Linfonodo Sentinela , Anticorpos Monoclonais/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Metástase Linfática , Curva ROC
3.
CNS Neurosci Ther ; 20(9): 830-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24810017

RESUMO

BACKGROUND AND AIMS: The nuclear localization of ß-catenin, a mediator of canonical Wnt signaling, has been indicated in a variety of cancers and is frequently related to tumor progression and metastasis. Therefore, targeting ß-catenin is an attractive therapeutic strategy for cancers. METHODS: Herein, we identified a natural, small molecule inhibitor of ß-catenin signaling, BASI, and evaluated its therapeutic efficacy both in vitro and in orthotopic mouse models of glioma. RESULTS: BASI significantly suppressed proliferation and invasion and induced apoptosis in glioblastoma cells and resulted in the remarkable attenuation of orthotopic tumor growth in vivo. Furthermore, we found that BASI altered the expression of several microRNAs, which mediated the posttranscriptional silencing of ß-catenin expression either directly or indirectly through a von Hippel-Lindau (VHL)-mediated ß-catenin degradation pattern. CONCLUSIONS: Taken together, our findings offer preclinical validation of BASI as a promising new type of ß-catenin inhibitor with a mechanism of inhibition that has broad potential for the improved treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , MicroRNAs/metabolismo , Neuroblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Inibidor da Tripsina de Soja de Kunitz/farmacologia , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Proteína de Ligação a CREB/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos Nus , MicroRNAs/genética , Neuroblastoma/patologia , Ligação Proteica/efeitos dos fármacos , beta Catenina/genética
4.
Mol Cancer ; 13: 63, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24650032

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. METHODS: miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. RESULTS: In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the ß-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. CONCLUSIONS: miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/genética , Glioblastoma/genética , MicroRNAs/genética , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Imunofluorescência , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transfecção , Proteína Supressora de Tumor Von Hippel-Lindau/genética
5.
Cancer Lett ; 342(1): 139-49, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24012640

RESUMO

Epidermal growth factor receptors (EGFR) expression is frequently amplified in human glioblastoma cells. Nimotuzumab, a monoclonal antibody (mAb) against EGFR, has been used globally in clinics as an anti-cancer agent. It is largely unknown whether the blockade of miR-21, a microRNA that is upregulated in glioma cells, could amplify the effects of nimotuzumab. Herein, we have demonstrated that miR-21 directly targets von Hippel-Lindau (VHL) and peroxisome-proliferator-activated receptor α (PPARα) and that miR-21 regulates EGFR/AKT signaling through VHL/ß-catenin and the PPARα/AP-1 axis. Further, the expression of miR-21 is regulated by EGFR via the activation of ß-catenin and AP-1. These data indicate that a feedback loop exists between miR-21 and EGFR. We also show that the combination of nimotuzumab and an inhibitor of miR-21 is superior to single-agent therapy. These results clarify a novel association between miR-21 and EGFR in the regulation of cancer cell progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sequência de Bases , Sítios de Ligação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Fator de Transcrição AP-1/metabolismo , Carga Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
6.
CNS Neurosci Ther ; 19(2): 98-108, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23230963

RESUMO

BACKGROUND AND AIMS: Currently temozolomide (TMZ) as a potent agent is widely used to treat the glioblastoma multiforme (GBM), whereas recurrence due to intrinsic or acquired therapeutic resistance often occurs. Combination chemotherapy with TMZ may be a promising therapeutic strategy to improve treatment efficacy. METHODS: Aspirin, TMZ, and aspirin-/TMZ-coloaded poly (L-lactide-co-glycolide) (PLGA) microspheres were prepared by spray drying, and cytotoxicities of glioblastoma cells were measured. RESULTS: Aspirin microsphere treatment induced slight apoptosis and modestly inhibited proliferation of LN229 and U87 cells in vitro and in vivo through inhibition of ß-catenin transactivation. However, aspirin-/TMZ-coloaded microspheres presented synergistic antitumor efficacy compared with single TMZ-loaded microspheres. Aspirin/TMZ microspheres induced more apoptosis and repressed proliferation of LN229 and U87 cells. Corresponding to inhibition of ß-catenin signaling, ß-catenin/TCF4 transcriptional activity and STAT3 luciferase activity were strongly suppressed, and downstream targets expression was decreased. Furthermore, aspirin/TMZ microsphere intratumoral injection downregulated the expression of ß-catenin, TCF4, pAKT, pSTAT3, and PCNA and delayed tumor growth in nude mice harboring subcutaneous LN229 xenografts. CONCLUSIONS: Aspirin sensitized TMZ chemotherapy efficacy through inhibition of ß-catenin transactivation; furthermore, the coloaded microspheres achieved a sustained release action to reduce the TMZ dosage, offering the potential for improved treatment of glioblastomas.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Aspirina/administração & dosagem , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Ativação Transcricional/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sinergismo Farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microesferas , Distribuição Aleatória , Temozolomida , Ativação Transcricional/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , beta Catenina/genética
7.
Mol Cancer ; 9: 229, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20813046

RESUMO

BACKGROUND: MiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive. RESULTS: Here we showed that miR-221/222 inhibited cell apoptosis by targeting pro-apoptotic gene PUMA in human glioma cells. Enforced expression of miR-22/222 induced cell survival whereas knockdown of miR-221/222 rendered cells to apoptosis. Further, miR-221/222 reduced PUMA protein levels by targeting PUMA-3'UTR. Introducing PUMA cDNA without 3'UTR abrogated miR-221/222-induced cell survival. Notably, knockdown of miR-221/222 induces PUMA expression and cell apoptosis and considerably decreases tumor growth in xenograft model. Finally, there was an inverse relationship between PUMA and miR-221/222 expression in glioma tissues. CONCLUSION: To our knowledge, these data indicate for the first time that miR-221/222 directly regulate apoptosis by targeting PUMA in glioblastoma and that miR-221/222 could be potential therapeutic targets for glioblastoma intervention.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Glioblastoma/metabolismo , Glioblastoma/terapia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Camundongos , Camundongos Nus , MicroRNAs/genética , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA