Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38544120

RESUMO

Community wastewater management systems (CWMS) are small-scale wastewater treatment systems typically in regional and rural areas with less sophisticated treatment processes and often managed by local governments or communities. Research and industrial applications have demonstrated that online UV-Vis sensors have great potential for improving wastewater monitoring and treatment processes. Existing studies on the development of surrogate parameters with models from spectral data for wastewater were largely limited to lab-based. In contrast, industrial applications of these sensors have primarily targeted large wastewater treatment plants (WWTPs), leaving a gap in research for small-scale WWTPs. This paper demonstrates the suitability of using a field-based online UV-Vis sensor combined with advanced data analytics for CWMSs as an early warning for process upset to support sustainable operations. An industry case study is provided to demonstrate the development of surrogate monitoring parameters for total suspended solids (TSSs) and chemical oxygen demand (COD) using the UV-Vis spectral data from an online UV-Vis sensor. Absorbances at a wavelength of 625 nm (UV625) and absorbances at a wavelength of 265 nm (UV265) were identified as surrogate parameters to measure TSSs and COD, respectively. This study contributes to the improvement of WWTP performance with a continuous monitoring system by developing a process monitoring framework and optimization strategy.

2.
Environ Sci Pollut Res Int ; 31(14): 20792-20813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400981

RESUMO

This paper presents a structured bibliometric analysis and review of the research publications recorded in the Web of Science database from 2000 to 2023 to methodically examine the landscape and development of the 'wastewater to energy' research field in relation to global trends, potential hotspots, and future research directions. The study highlights three main research themes in 'wastewater to energy', which are biogas production through anaerobic digestion of sewage sludge, methane generation from microbial wastewater treatment, and hydrogen production from biomass. The analysis reveals activated sludge, biochar, biomethane, biogas upgrading, hydrogen, and circular economy as key topics increasingly gaining momentum in recent research publications as well as representing potential future research directions. The findings also signify transformation to SDGs and circular economy practices, through the integration of on-site renewables and biogas upgrading for energy self-sufficiency, optimising energy recovery from wastewater treatment systems, and fostering research and innovation in 'wastewater to energy' supported by policy incentives. By shedding light on emerging trends, cross-cutting themes, and potential policy implications, this study contributes to informing both knowledge and practices of the 'wastewater to energy' research community.


Assuntos
Esgotos , Águas Residuárias , Biocombustíveis , Bibliometria , Hidrogênio
3.
Glob Chall ; 7(10): 2300138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829683

RESUMO

In view of increasing threats arising from the shortage of fresh water, there is an urgent need to propose sustainable technologies for the exploitation of unconventional water sources. As a derivative of microbial fuel cells (MFCs), microbial desalination cell (MDC) has the potential of desalinating saline/brackish water while simultaneously generating electricity, as well as treating wastewater. Therefore, it is worth investigating its practicability as a potential sustainable desalination technology. This review article first introduces the fundamentals and annual trends of MDCs. The desalination of diverse types of solutions using MDCs along with their life cycle impact assessment (LCIA)  and economic analysis is studied later. Finally, limitations and areas for improvement, prospects, and potential applications of this technology are discussed. Due to the great advantages of MDCs, improving their design, building materials, efficiency, and throughput will offer them as a significant alternative to the current desalination technologies.

4.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2555-2565, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899123

RESUMO

Taihu Lake has officially implemented the full fishing ban policy since October 1, 2020. We investigated fish community of Taihu Lake in the four seasons of 2020. A total of 42 fish species were collected, belonging to 6 orders, 7 families, and 33 genera. The first five dominant species ranked by the index of relative importance were Coilia nasus, Toxabramis swinhonis, Hypophthalmichthys molitrix, Hypophthalmichthys nobilis, and Salangichthys tangkahkeii. The number of C. nasus accounted for 85.1% of the total number of catches. According to the distributional characteristics of cyanobacterial blooms and aquatic plants, Taihu Lake could be divided into the northern, central, and eastern regions. There was no significant difference in catch per unit effort (CPUE) among different lake regions, but Shannon diversity index and Pielou evenness index in the eastern region was greater than in the other two regions. The CPUE, Shannon diversity index, and Pielou evenness index were significantly different among the four seasons, with the lowest CPUE in autumn and higher diversity in autumn and winter than in spring and summer. Electrical conductivity, water depth, chloride, and transparency were the main environmental factors driving the seasonal variations of fish community in Taihu Lake, while electrical conductivity, dissolved oxygen, total alkalinity, and transparency were key variables driving the spatial patterns. The results could be used as the baseline data for fish community studies in Taihu Lake after the fishing ban.


Assuntos
Cianobactérias , Lagos , Humanos , Animais , Lagos/química , Caça , Água , Estações do Ano , China , Monitoramento Ambiental
5.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458971

RESUMO

Water quality monitoring is an essential component of water quality management for water utilities for managing the drinking water supply. Online UV-Vis spectrophotometers are becoming popular choices for online water quality monitoring and process control, as they are reagent free, do not require sample pre-treatments and can provide continuous measurements. The advantages of the online UV-Vis sensors are that they can capture events and allow quicker responses to water quality changes compared to conventional water quality monitoring. This review summarizes the applications of online UV-Vis spectrophotometers for drinking water quality management in the last two decades. Water quality measurements can be performed directly using the built-in generic algorithms of the online UV-Vis instruments, including absorbance at 254 nm (UV254), colour, dissolved organic carbon (DOC), total organic carbon (TOC), turbidity and nitrate. To enhance the usability of this technique by providing a higher level of operations intelligence, the UV-Vis spectra combined with chemometrics approach offers simplicity, flexibility and applicability. The use of anomaly detection and an early warning was also discussed for drinking water quality monitoring at the source or in the distribution system. As most of the online UV-Vis instruments studies in the drinking water field were conducted at the laboratory- and pilot-scale, future work is needed for industrial-scale evaluation with ab appropriate validation methodology. Issues and potential solutions associated with online instruments for water quality monitoring have been provided. Current technique development outcomes indicate that future research and development work is needed for the integration of early warnings and real-time water treatment process control systems using the online UV-Vis spectrophotometers as part of the water quality management system.


Assuntos
Água Potável , Purificação da Água , Espectrofotometria , Qualidade da Água , Abastecimento de Água
6.
Environ Sci Pollut Res Int ; 29(13): 19530-19539, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34718954

RESUMO

Stormwater runoff contains a myriad of pollutants, including faecal microbes, and can pose a threat to urban water supplies, impacting both economic development and public health. Therefore, it is a necessity to implement a real-time hazard detection system that can collect a substantial amount of data, assisting water authorities to develop preventive strategies to ensure the control of hazards entering drinking water sources. An on-line UV-Vis spectrophotometer was applied in the field to collect real-time continuous data for various water quality parameters (nitrate, DOC, turbidity and total suspended solids) during three storm events in Mannum, Adelaide, Australia. This study demonstrated that the trends for on-line and comparative laboratory-analysed samples were complimentary through the events. Nitrate and DOC showed a negative correlation with water level, while turbidity and total suspended solids indicated a positive correlation with water level during the high rainfall intensity. The correlations among nitrate, DOC, turbidity, total suspended solids and water level are the opposite during low rainfall intensity. Nitrate, one of the main pollutants in stormwater, was investigated and used as a surrogate parameter for microbial detection. However, the microbiological data (Escherichia coli) from captured storm events showed poor correlations to nitrate and other typical on-line parameters in this study. This is possibly explained by the nature of the stormwater catchment outside of rain events, where the sources of bacteria and nutrients may be physically separated until mixed during surface runoff as a result of rainfall. In addition, the poor correlations among the microbiological data and on-line parameters could be due to the different sources of bacteria and nutrients that were transported to the stormwater drain where sampling and measurement were conducted.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Chuva , Análise Espectral , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 28(10): 12576-12586, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33079347

RESUMO

There is an increasing need to use online instrumentation for continuous monitoring of water quality. However, industrial applications using online instruments, such as submersible UV-Vis spectrophotometers, may require the use of alternative techniques to remove particle effect rather than performing a physical filtration step. Some submersible UV-Vis spectrophotometers have built-in generic particle compensation algorithms to remove the filtration step. This work studied the influence of suspended particles on the measurements of a submersible UV-Vis spectrophotometer as well as the performance of the built-in particle compensation technique under laboratory-controlled conditions. Simulated water samples were used in the combinations of standard particles from laboratory chemical and natural particles extracted from water systems with ultrapure water and treated water from a drinking water treatment plant. Particle contributions to the UV absorbance at 254 nm (UV254) measurements of water samples varied differently when particle types or concentrations changed. The compensated UV254, measured by the submersible instrument using the built-in generic particle compensation algorithms, was compared with laboratory UV254, analysed by the bench-top instrument with the physical filtration method. The results indicated that the built-in generic compensation algorithms of the submersible UV-Vis spectrophotometer may generate undercompensated UV254 or overcompensated UV254 for various surface waters. These findings provide in-depth knowledge about the impact of suspended particles on the measurements of submersible UV-Vis spectrophotometers; source water dependence; and why site-specific calibration is often needed to get accurate measurements.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Calibragem , Espectrofotometria , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 25(28): 28296-28311, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30083895

RESUMO

With rapid urbanisation and industrialisation, land-use practice, while satisfying the ever-increasing desires of our material civilisation in the short term, may undermine natural ecosystems on a local, regional and global scale in the long run. Innovative and sustainable land-use practices should be developed in response, so that eco-environmental problems can assessed and dealt with during the whole process of land-use planning, construction, operation, maintenance and management. Using a bibliometric analysis, this study has traced global trends in land-use research from 1992 to 2016, as indexed in the Science Citation Index EXPANDED (SCI-EXPANDED) and the Social Sciences Citation Index (SSCI). A novel method called 'word cluster analysis' has revealed that hotspot analysis is one of the emerging techniques, tools and strategies used to respond to, improve, and protect deteriorating ecosystems during land use. Based on involving various elements, the emerging analytical techniques and tools, including geographical information systems (GIS) and remote sensing, have attracted attention for their ability to assess and solve increasingly serious eco-environmental problems, such as climate change, deforestation, soil erosion, greenhouse gas (GHG) emissions and eutrophication. Ecosystem services, biodiversity conservation, protected areas, and sustainable development are also potential resilience strategies used to confront eco-environmental destruction. The maximum benefits that can be derived from natural ecosystems should be pursued to achieve environmentally sustainable land-use development, strengthening the socio-economy and eco-environment, as well as enhancing the well-being of people and nature.


Assuntos
Bibliometria , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Urbanização , Mudança Climática , Ecossistema , Sistemas de Informação Geográfica , Tecnologia de Sensoriamento Remoto , Solo/normas
9.
Appl Microbiol Biotechnol ; 102(8): 3453-3473, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29497798

RESUMO

With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.


Assuntos
Bibliometria , Pesquisa/estatística & dados numéricos , Esgotos , Reatores Biológicos , China
10.
Environ Sci Pollut Res Int ; 24(35): 27613-27630, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29134520

RESUMO

With an exponential increase in urbanization and industrialization, water pollution is an inevitable consequence of relatively lagging wastewater treatment facilities. The conventional activated sludge process for wastewater treatment primarily emphasizes the removal of harmful substances to maintain increasingly stringent effluent discharged standards, which is considered an energy-intensive technique. Therefore, innovative and sustainable wastewater treatment should pay more attention to energy and resource recovery in dealing with fossil fuel depletion, global-scale energy security, and climate change. A bibliometric analysis was applied to trace wastewater-energy nexus-related research during the period 1991 to 2015, with respect to the Science Citation Index EXPANDED (SCI-EXPANDED) database. Journal of Hazardous Materials, ranking 1st in h-index (79), was the most productive journal (431, 4.5%) during the same time, followed by International Journal of Hydrogen Energy (422, 4.4%) and Water Research (393, 4.1%) journal, the latter owning a topmost journal impact factor. Though, China (2154, 22.5%) was the most productive country, while the USA with highest h-index (88) was the favorest collaborative country. The Chinese Academy of Sciences, China (241, 2.5%) produced the maximum publications. A novel method called "word cluster analysis" showed that the emerging sustainable processes and novel renewable energy application are applied in response to the desire for a net wastewater-energy nexus system. Based on different wastewater types, the emerging energy and sources recovery treatment processes of Anammox, anaerobic digestion, and microbial fuel cells gained extensive innovation. Evaluation indicators including sustainability, life cycle assessment, and environmental impact were appropriately used to dissert feasibility of the novel treatment methods in regard of renewable energy utilization, energy savings, and energy recovery. The transformation of the new concept of "broaden income source, economize on expenditures and exploit inner potential" should be generalized in order to achieve an environmentally sustainable development of wastewater-energy nexus system.


Assuntos
Bibliometria , Conservação de Recursos Energéticos/métodos , Projetos de Pesquisa , Purificação da Água/métodos , Benchmarking , China , Conservação de Recursos Energéticos/economia , Conservação dos Recursos Naturais , Fator de Impacto de Revistas , Esgotos/química , Águas Residuárias/química , Purificação da Água/economia , Purificação da Água/normas
11.
J Environ Sci (China) ; 50: 21-31, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28034426

RESUMO

A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m2, circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.


Assuntos
Técnicas Eletroquímicas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Oxirredução
12.
J Hazard Mater ; 287: 412-20, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25681716

RESUMO

This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45µm) had a high concentration of 3.9×10(5) counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.


Assuntos
Microbolhas , Ozônio/química , Águas Residuárias/química , Resinas Acrílicas , Indústria Manufatureira , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...