Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4814, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862469

RESUMO

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.


Assuntos
Antígenos CD36 , Ácidos Nucleicos Livres , DNA Mitocondrial , Voo Espacial , Ausência de Peso , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Humanos , Ácidos Nucleicos Livres/sangue , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Astronautas , RNA/metabolismo , RNA/genética , Biópsia Líquida/métodos , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Feminino , Pessoa de Meia-Idade , Adulto
2.
Commun Biol ; 6(1): 875, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626149

RESUMO

Spaceflight-related stresses impact health via various body systems, including the haematopoietic and immune systems, with effects ranging from moderate alterations of homoeostasis to serious illness. Oxidative stress appears to be involved in these changes, and the transcription factor Nrf2, which regulates expression of a set of cytoprotective and antioxidative stress response genes, has been implicated in the response to spaceflight-induced stresses. Here, we show through analyses of mice from the MHU-3 project, in which Nrf2-knockout mice travelled in space for 31 days, that mice lacking Nrf2 suffer more seriously from spaceflight-induced immunosuppression than wild-type mice. We discovered that a one-month spaceflight-triggered the expression of tissue inflammatory marker genes in wild-type mice, an effect that was even more pronounced in the absence of Nrf2. Concomitant with induction of inflammatory conditions, the consumption of coagulation-fibrinolytic factors and platelets was elevated by spaceflight and further accelerated by Nrf2 deficiency. These results highlight that Nrf2 mitigates spaceflight-induced inflammation, subsequent immunosuppression, and thrombotic microangiopathy. These observations reveal a new strategy to relieve health problems encountered during spaceflight.


Assuntos
Voo Espacial , Microangiopatias Trombóticas , Animais , Camundongos , Terapia de Imunossupressão , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
3.
Commun Biol ; 6(1): 424, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085700

RESUMO

Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.


Assuntos
Atrofia Muscular , Ausência de Peso , Camundongos , Animais , Atrofia Muscular/prevenção & controle , Músculo Esquelético/fisiologia , Ausência de Peso/efeitos adversos , Lua
4.
Cell Rep ; 42(4): 112289, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952339

RESUMO

Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.


Assuntos
Fibras Musculares de Contração Rápida , Cadeias Pesadas de Miosina , Camundongos , Animais , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo
5.
Mol Cell Neurosci ; 121: 103745, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660087

RESUMO

Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Ausência de Peso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Kidney Int ; 101(1): 92-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767829

RESUMO

Space travel burdens health by imposing considerable environmental stress associated with radioactivity and microgravity. In particular, gravity change predominantly impacts blood pressure and bone homeostasis, both of which are controlled mainly by the kidneys. Nuclear factor erythroid-2-related transcription factor 2 (Nrf2) plays essential roles in protecting the kidneys from various environmental stresses and injuries. To elucidate the effects of space travel on mammals in preparation for the upcoming space era, our study investigated the contribution of Nrf2 to kidney function in mice two days after their return from a 31-day stay in the International Space Station using Nrf2 knockout mice. Meaningfully, expression levels of genes regulating bone mineralization, blood pressure and lipid metabolism were found to be significantly altered in the kidneys after space travel in an Nrf2-independent manner. In particular, uridine diphosphate-glucuronosyltransferase 1A (Ugt1a) isoform genes were found to be expressed in an Nrf2-dependent manner and induced exclusively in the kidneys after return to Earth. Since spaceflight elevated the concentrations of fatty acids in the mouse plasma, we suggest that Ugt1a isoform expression in the kidneys was induced to promote glucuronidation of excessively accumulated lipids and excrete them into urine after the return from space. Thus, the kidneys were proven to play central roles in adaptation to gravity changes caused by going to and returning from space by controlling blood pressure and bone mineralization. Additionally, kidney Ugt1a isoform induction after space travel implies a significant role of the kidneys for space travelers in the excretion of excessive lipids.


Assuntos
Metabolismo dos Lipídeos , Voo Espacial , Animais , Pressão Sanguínea/genética , Calcificação Fisiológica , Expressão Gênica , Rim/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
7.
Commun Biol ; 4(1): 1381, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887485

RESUMO

Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses.


Assuntos
Tecido Adiposo Branco/metabolismo , Epididimo/metabolismo , Fator 2 Relacionado a NF-E2/genética , Voo Espacial , Animais , Masculino , Metaboloma , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismo
10.
iScience ; 24(7): 102773, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278272

RESUMO

As space travel becomes more accessible, it is important to understand the effects of spaceflight including microgravity, cosmic radiation, and psychological stress. However, the effect on offspring has not been well studied in mammals. Here we investigated the effect of 35 days spaceflight on male germ cells. Male mice that had experienced spaceflight exhibit alterations in binding of transcription factor ATF7, a regulator of heterochromatin formation, on promoter regions in testis, as well as altered small RNA expression in spermatozoa. Offspring of space-traveling males exhibit elevated hepatic expression of genes related to DNA replication. These results indicate that spaceflight has intergenerational effect.

11.
Commun Biol ; 4(1): 787, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168270

RESUMO

Microgravity induces skeletal muscle atrophy, particularly in the soleus muscle, which is predominantly composed of slow-twitch myofibre (type I) and is sensitive to disuse. Muscle atrophy is commonly known to be associated with increased production of reactive oxygen species. However, the role of NRF2, a master regulator of antioxidative response, in skeletal muscle plasticity during microgravity-induced atrophy, is not known. To investigate the role of NRF2 in skeletal muscle within a microgravity environment, wild-type and Nrf2-knockout (KO) mice were housed in the International Space Station for 31 days. Gene expression and histological analyses demonstrated that, under microgravity conditions, the transition of type I (oxidative) muscle fibres to type IIa (glycolytic) was accelerated in Nrf2-KO mice without affecting skeletal muscle mass. Therefore, our results suggest that NRF2 affects myofibre type transition during space flight.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Fator 2 Relacionado a NF-E2/fisiologia , Voo Espacial , Animais , Perfilação da Expressão Gênica , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/deficiência
12.
Sci Rep ; 11(1): 9168, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911096

RESUMO

Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (µg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Ausência de Peso , Adaptação Biológica/genética , Animais , Canais de Cálcio/genética , Linhagem Celular , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiopatologia , Voo Espacial
13.
Exp Anim ; 70(2): 236-244, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33487610

RESUMO

Clarification of the criteria for managing animal health is essential to increase the reliability of experiments and ensure transparency in animal welfare. For experiments performed in space, there is no consensus on how to care for animals owing to technical issues, launch mass limitation, and human resources. Some biological processes in mammals, such as musculoskeletal or immune processes, are altered in the space environment, and mice in space can be used to simulate morbid states, such as senescence acceleration. Thus, there is a need to establish a novel evaluation method and evaluation criteria to monitor animal health. Here, we report a novel method to evaluate the health of mice in space through a video downlink in a series of space experiments using the Multiple Artificial-gravity Research System (MARS). This method was found to be more useful in evaluating animal health in space than observations and body weight changes of the same live mice following their return to Earth. We also developed criteria to evaluate health status via a video downlink. These criteria, with "Fur condition" and "Respiratory" as key items, provided information on the daily changes in the health status of mice and helped to identify malfunctions at an early stage. Our method and criteria led to the success of our missions, and they will help establish appropriate rules for space experiments in the future.


Assuntos
Medicina Aeroespacial/métodos , Nível de Saúde , Camundongos , Voo Espacial , Animais , Reprodutibilidade dos Testes
14.
Sci Rep ; 11(1): 2665, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514775

RESUMO

Many experiments have analyzed the effect of the space environment on various organisms. However, except for the group-rearing of mice in space, there has been little information on the behavior of organisms in response to gravity changes. In this study, we developed a simple Active Inactive Separation (AIS) method to extract activity and inactivity in videos obtained from the habitat cage unit of a space experiment. This method yields an activity ratio as a ratio of 'activity' within the whole. Adaptation to different gravitational conditions from 1g to hypergravity (HG) and from microgravity (MG) to artificial 1g (AG) was analyzed based on the amount of activity to calculate the activity ratio and the active interval. The result for the activity ratios for the ground control experiment using AIS were close to previous studies, so the effectiveness of this method was indicated. In the case of changes in gravity from 1g to HG, the ratio was low at the start of centrifugation, recovered sharply in the first week, and entered a stable period in another week. The trend in the AG and HG was the same; adapting to different gravity environments takes time.


Assuntos
Adaptação Fisiológica , Comportamento Animal , Hipergravidade , Ausência de Peso , Animais , Masculino , Camundongos
15.
Cell ; 183(5): 1162-1184, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242416

RESUMO

Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Astronautas , Saúde , Humanos , Microbiota , Fatores de Risco
17.
Commun Biol ; 3(1): 496, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901092

RESUMO

Space flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS). After 31 days in the ISS, all flight mice returned safely to Earth. Transcriptome and metabolome analyses revealed that the stresses of space travel evoked ageing-like changes of plasma metabolites and activated the Nrf2 signaling pathway. Especially, Nrf2 was found to be important for maintaining homeostasis of white adipose tissues. This study opens approaches for future space research utilizing murine gene knockout-disease models, and provides insights into mitigating space-induced stresses that limit the further exploration of space by humans.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Voo Espacial , Aumento de Peso , Gordura Abdominal/patologia , Tecido Adiposo Branco/patologia , Envelhecimento/sangue , Envelhecimento/metabolismo , Animais , Osso e Ossos/patologia , Regulação da Expressão Gênica , Homeostase , Metaboloma , Camundongos Knockout , Músculos/patologia , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Análise de Sequência de RNA , Estresse Fisiológico , Aumento de Peso/genética
18.
Sci Rep ; 9(1): 19866, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882694

RESUMO

The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.


Assuntos
Gravidade Alterada , Voo Espacial , Timo/metabolismo , Animais , Sequência de Bases , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA-Seq
19.
NPJ Microgravity ; 5: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312718

RESUMO

Japan Aerospace Exploration Agency (JAXA) has developed mouse habitat cage units equipped with an artificial gravity-producing centrifuge, called the Multiple Artificial-gravity Research System (MARS), that enables single housing of a mouse under artificial gravity (AG) in orbit. This is a report on a hardware evaluation. The MARS underwent improvement in water leakage under microgravity (MG), and was used in the second JAXA mouse mission to evaluate the effect of AG and diet on mouse biological system simultaneously. Twelve mice were divided into four groups of three, with each group fed a diet either with or without fructo-oligosaccharide and housed singly either at 1 g AG or MG for 30 days on the International Space Station, then safely returned to the Earth. Body weight tended to increase in AG mice and decrease in MG mice after spaceflight, but these differences were not significant. This indicates that the improved MARS may be useful in evaluating AG and dietary intervention for space flown mice.

20.
Sci Rep ; 9(1): 6614, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036903

RESUMO

Spaceflight is known to induce severe systemic bone loss and muscle atrophy of astronauts due to the circumstances of microgravity. We examined the influence of artificially produced 2G hypergravity on mice for bone and muscle mass with newly developed centrifuge device. We also analyzed the effects of microgravity (mostly 0G) and artificial produced 1G in ISS (international space station) on mouse bone mass. Experiment on the ground, the bone mass of humerus, femur and tibia was measured using micro-computed tomography (µCT), and the all bone mass was significantly increased in 2G compared with 1G control. In tibial bone, the mRNA expression of bone formation related genes such as Osx and Bmp2 was elevated. The volume of triceps surae muscle was also increased in 2G compared with 1G control, and the mRNA expression of myogenic factors such as Myod and Myh1 was elevated by 2G. On the other hand, microgravity in ISS significantly induced the loss of bone mass on humerus and tibia, compared with artificial 1G induced by centrifugation. Here, we firstly report that bone and muscle mass are regulated by the gravity with loaded force in both of positive and negative on the ground and in the space.


Assuntos
Osso Esponjoso/fisiologia , Músculo Esquelético/fisiologia , Absorciometria de Fóton , Animais , Peso Corporal/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Osso Esponjoso/metabolismo , Ingestão de Alimentos/fisiologia , Fêmur/metabolismo , Fêmur/fisiologia , Úmero/metabolismo , Úmero/fisiologia , Hipergravidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Fator de Transcrição Sp7/metabolismo , Tíbia/metabolismo , Tíbia/fisiologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...